
Modelling Entailment with Neural Networks

Todor Davchev

s1045064
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2020

Abstract

Sentence classification is currently among the unresolved challenges of Natural Lan-

guage Understanding and Machine Learning. In this thesis we focus on modelling

entailment relations which can be considered as a sub-problem of sentence classifica-

tion.

We show that the results from the currently adopted Recurrent Neural Networks

and Long Short-Term Memory models can be matched and even outperformed for

recognising textual entailment. More specifically, we show that other techniques, such

as Convolutional Neural Networks (CNNs), tackle the problem in a similar in terms of

accuracy, however simpler in terms of feature engineering approach.

We propose a novel Siamese-like 3-CNN-wide architecture. We extend that model

by applying a variety of mathematical operations to the intermediate input of the third

CNN. More precisely, we exploit the low dimensionality representation of the already

processed initial inputs via a series of linear and multiplicative operands. We then

show that our approach achieves better results than the existing techniques, however

significantly increasing the size of the parameters trained.

Nevertheless, our implementation has a modular and loosely coupled architecture.

i

Acknowledgements

I wish to express my sincere gratitude to my project supervisor, Prof. Mirella Lapata

for her support, guidance and the constant feeling of inspiration.

Also, I would like to thank my family and friends for the unceasing encouragement,

support and understanding throughout this venture. I am also thankful to all those who

engaged in numerous discussions with regards to this topic.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Todor Davchev

s1045064)

iii

Dedicated to Bozhin and Yuliya.

iv

Contents

1 Introduction 1
1.1 General Overview . 1

1.2 Motivations . 3

1.3 Realisation and Document Structure 4

2 Background 5
2.1 Linear Models for Classification . 5

2.1.1 Activation Functions . 7

2.1.2 On-line parameter learning 9

2.1.3 Regularisation . 9

2.1.4 Cross Validation . 10

2.2 Feed-forward Neural Networks . 11

2.2.1 Concepts . 11

2.2.2 Network Training . 13

2.2.3 Parameter Optimisation . 14

2.2.4 Error Backpropagation . 15

2.2.5 Model Architectures . 17

2.3 Word Vectors . 18

2.3.1 Word Representations . 18

2.3.2 Semantic Composition . 20

2.4 Convolutional Neural Networks . 22

2.4.1 Motivation . 22

2.4.2 A different perspective . 24

2.4.3 In depth analysis . 25

2.4.4 Backpropagation . 28

2.4.5 Simple architecture of a CNN for NLU 28

2.5 Siamese Model . 30

v

3 Modelling Entailment 32
3.1 Entailment Relations with SNLI . 32

3.2 Simple Model . 34

3.2.1 Implementation and Code Re-factoring 34

3.3 Building Extended Models . 37

3.3.1 Accommodating the model to work with SNLI 37

3.3.2 Extending the Model . 38

3.3.3 Siamese-like 3-CNN-wide structure 38

3.3.4 Additive and Multiplicative Models 39

3.4 Summary . 41

4 Test and Evaluation 43
4.1 Initial Tests . 43

4.1.1 Baseline Model . 43

4.1.2 Extended Model . 45

4.1.3 Randomised Parameter Optimisation 47

4.2 Further Work . 54

4.2.1 Embeddings Evaluation . 54

4.2.2 Mixed Models Performance 54

4.2.3 Third CNN’s Input Shape 56

4.2.4 Number of Epochs . 58

4.3 Additional Hyper-parameter Optimisation 58

4.4 Conclusion . 59

5 Discussion and Future Work 61
5.1 Further Experimentation . 61

5.2 Attention-Based CNNs . 62

5.3 Parameter Reduction . 62

5.4 Domain Adaptation . 63

5.5 Conclusion . 64

A Appendix 65
A.1 Linear Regression . 65

A.1.1 Pseudo-inverse . 65

A.1.2 Bias . 66

A.1.3 Deriving OED . 66

vi

A.2 Convolutional Neural Networks . 67

A.2.1 Circular Convolution . 67

A.2.2 Backpropagation . 68

A.3 Recurrent Neural Networks . 68

A.3.1 Basic Model . 68

A.3.2 Backpropagation Through Time and LSTMs 69

Bibliography 71

vii

Chapter 1

Introduction

Solving intelligence is among the unanswered challenges of the modern world.

Understanding and building a system that is fully autonomous is an AI-hard problem.

Those issues are hypothesised to involve computer vision, natural language processing

(NLP) and dealing with unseen, unexpected situations (Shapiro, 1992).

Natural language understanding is a subtopic of NLP that deals with machine read-

ing comprehension. Understanding and reasoning about natural language can lead to

alternative solutions to issues related with visual impairments, colourblindness or help

people overcome the language barriers in conversations.

1.1 General Overview

The original problem of Natural Language Understanding (NLU) can be simply

put. It models the natural language reasoning process through parsing and disassem-

bling of some input. In other words, formal NLU attempts to show how one represents

and learns the semantics (meaning) of natural language, to which there are only partial

answers1.

NLU should not be confused with NLP or Automatic Speech Recognition (ASR).

Figure 1.1 provides a graphical comparison between NLP, NLU and ASR.

The challenges on the topic date from 1964 when Daniel Bobrow wrote STUDENT

(Bobrow, 1964)- a system that could solve algebraic problems by understanding simple

natural language inputs. His work was followed by other projects which were also

based around the concept of pattern-matching through the adoption of small rule-sets

- good example of which is (Weizenbaum, 1966). Thus, the work of Bobrow is known

1http://videolectures.net/icml2015 liang language understanding/

1

Chapter 1. Introduction 2

Figure 1.1: Relationship between the three fields2.

to mark the first research conducted on the field. Similarly, the work of (Winograd,

1972), (Martin, 1973) or (Searle, 1980) during the 70s and 80s, addressed the challenge

of understanding natural language through logic-driven, linguistically rich grounded

systems2. The interest towards NLU suffered a drastic decrease during the 90s. That

period, known as the “statistical revolution” in NLP, paid a lot of attention to the area of

parsing as well as the fields of sentence processing and language acquisition (Johnson,

2009). Since 2010, however, NLU returned as a central interest, mixing the broad

range of techniques introduced in the previous decades (Goldberg, 2015).

Moreover, the existing applications of neural networks (NN) have shown an im-

provement in many of the concepts laid out in Figure 1.1. Also known as non-linear

classifiers, NNs can be roughly split in two main families, and namely into the fully

connected feed-forward networks (which include multilayer perceptrons and convolu-

tional neural networks with the associated pooling techniques); and the recurrent as

well as recursive neural networks.

“Feed-forward systems have successfully managed to replace their linear alterna-

tives” 3. Being placed as immediate replacement of the linear models, they have man-

aged to improve accuracy in topics like language modelling (Bengio et al., 2006) and

syntactic parsing (Weiss et al., 2015), (Chen and Manning, 2014). Similarly, recur-

sive (ReNN) and recurrent neural networks (RNN) have been largely successful in

recognising regularities within sequentially structured data of arbitrary sizes such as

sequences and trees (Goldberg, 2015). Good examples include the work of (Dyer et al.,

2http://nlp.stanford.edu/ wcmac/papers/20140716-UNLU.pdf
3T. Davchev’s IRP report

Chapter 1. Introduction 3

2015) on dependency parsing and (Rocktäschel et al., 2015) on modelling entailment

relations. Furthermore, convolutional neural networks (CNN) have proved very suc-

cessful in tackling problems like sentence and document classification (Johnson and

Zhang, 2015), (Kim, 2014) as well as question answering (Dong et al., 2015).

This project is focused on entailment modelling. The problem of Recognising

textual entailment (RTE) is to determine whether the meaning of a natural language

sentence is (i) in contradiction with another, (ii) not related with it at all, or whether

(iii) the first sentence (called a premise) entails the second one (called a hypothesis)

(Rocktäschel et al., 2015).

1.2 Motivations

The constantly growing impact of NLU has turned the field into an important and

attractive research area. Moreover, it is facing a lot of interest not only from the aca-

demic world but from the industrial one too. The work of groups like SNLP4 and

ILCC5 or products such as voice-driven assistants like Siri6 or content summarization

tools such as Summly7 are currently driving the field forward, leading to a number of

valuable and insightful discoveries (Reddy et al., 2016), (Chen et al., 2016), (Parikh

et al., 2016).

The field of Natural Language Processing (NLP) uses entailment modelling in a

variety of different problems such as machine translation, document summarisation

and information extraction. These rely on the correctness of the RTE classification

which itself marks the demand for as accurate textual entailment systems as possible.

In the light of these findings, we formulate our hypothesis. We believe that mod-

elling entailment relations should be tackled as a classification problem. Thus, imply-

ing that CNNs can in fact introduce a simpler and yet at least as powerful solution as

the RNN-based one proposed in (Rocktäschel et al., 2015).

We have proved that we can achieve higher results (81.26%) with the proposed in

this thesis CNN architecture as opposed to a basic chain-structured long short-term

memory (LSTM) network (Bowman et al., 2015) or even an Attention-based LSTM

RNN (Rocktäschel et al., 2015) and this thesis aims to reveal how we did this.
4http://nlp.stanford.edu/
5http://web.inf.ed.ac.uk/ilcc
6http://www.apple.com/uk/ios/siri/
7http://summly.com/

Chapter 1. Introduction 4

In summary, there has been an increasing interest and constant progress in extract-

ing information from unstructured data in the recent years. It is an exciting field for

both the academic and industrial worlds as it gives the opportunity to be involved in

the next state-of-the art solutions which will set the grounds for the forthcoming break-

throughs.

1.3 Realisation and Document Structure

In particular, we implement a solution in Theano. Moreover, we build a basic

model which consists of a single CNN and use it to classify the relationship between

two sentences. To ensure the correctness of our implementation, we use the MR dataset

and compare the results obtained with those described in (Kim, 2014). We refer to

this approach as our baseline. Then, we use the SNLI dataset and run it through the

same neural network implementation. We analyse our results and compare them with

the existing state-of-the-art results. We extend our basic model by implementing a

Siamese-like architecture which consists of 3 CNNs in total. One for each of the two

sentences and a third one which uses the output of the former two as input. Then, we

implement a number of additive and multiplicative models which we use individually

and build combinations of them. In all of these models we use a feed-forward layer for

the final classification result.

The rest of the dissertation is divided into four sections. In Chapter 2, we provide

a brief, yet sufficient overview of the background and related work to the research

interests of this thesis. In Chapter 3, we define a detailed description of the work

undertaken. Chapter 4 consists of the tests and evaluation conducted throughout this

project. Finally, Chapter 5 consists of a conclusion and a discussion on the future work.

Chapter 2

Background

”You shall know a word by the

company it keeps!”

(Firth, 1957)

Currently, the most successful approaches towards handling NLU tasks consider

different variants of numerical representations of words and their relationship with

other words. As already stated, the goal of NLU and NLP in general is to find ways of

allowing computers to understand and reason about language.

Although linear combinations have useful analytical and computational properties,

they fail to accurately classify complicated structures. The reason behind this is that

they can easily fall under the curse of dimensionality. Thus, their application is limited

to certain degrees. Fortunately, with the current advances in deep learning, the focus

of NLP is no longer cast on using linear models (Goldberg, 2015). The main focus of

this work is cast on refining the ways we use neural networks to classify entailment

relations. Thus, the majority of this chapter provides a brief and yet sufficient expla-

nation of the terminology required to understand the rest of the thesis. In addition, we

adopt the writing consistency introduced in (Bishop, 2007).

2.1 Linear Models for Classification

To better explain the benefit of using neural networks, we will begin this chapter

with an explanation of linear models. The term linear implies that the equation used to

represent our model will always be a polynomial of degree 1. For example y = 2x1+3

is a linear equation for y. We refer to x as a feature, something that describes our

5

Chapter 2. Background 6

Figure 2.1: Linearly separable data. Figure 2.2: Effect to what is learnt from

varying λ.

data. If the data was modelling a car, a potential feature would be its colour, or brand.

The more features we use, the more descriptive our representation will be. In the

example above we use 2 and 3 as constant values. In reality, however, we do not know

what those values are. Thus, a common approach of writing them is as wn. These

values are referred to as weights. If we assumed that there is always an x0 = 1 value

which multiplies the free weight parameter (often referred to as bias), we can write

the above equation as y = w1� x1 + w0� x0. Note that the bias parameter ”shifts

the position of the hyperplane, but does not alter the angle” (Williams, 2015a). We

will represent the collection of features, i.e. the input to our linear classifier through

a vector X = [x1,x2,x3, . . . ,xn] and the collection of weights as another vector W =

[w1,w2,w3, . . . ,wn]. Thus, we could represent the definition of y as:

y =W T �X (2.1)

The size of those vectors is the dimensionality D of our hyperparameters. Note that

the equation presented here is both linear for the parameters W and the inputs X . Data

sets which can have their content split with a straight line are called linearly separable

(See Figure 2.1). Here, finding the weights is essential. This, will tell the classifier

what is the best place to locate the straight line, i.e. this will define the maximum

likelihood solution. Imagine we had a lot of values and more than one y. Then, X will

be a matrix and not a vector. Thus, the closed-form maximum likelihood solution for

the weight vector w using X and the vector y is given by:

ŵ = (XT X)−1XT y , (2.2)

Chapter 2. Background 7

We use y to refer to the target values and X is the matrix:

X =

x1

1 x1
2 1

x2
1 x2

2 1

. . . .

xn
1 xn

2 1

 (2.3)

Here, xm
1 is a feature x1 for m rows from X and xm

2 is feature x2 (Williams, 2015b).

Appendix A.1.1 contains a detailed proof for the pseudo inverse.

In this model, the role of the bias is to neutralise the difference between the av-

erages of the values in x or any other function that could accept x as a non-linearity

measurement (Bishop, 2007). Appendix A.1.2 gives a detailed explanation of that

statement.

The linear structure of the main equation can circumvent the limitations imposed

by the linear structure of the equation with respect to the inputs. This can be done

by introducing a function φ(.), which can accept the inputs X and hence deal with

non-linearity. The equation will then be presented as:

y =W �φ(X) = wo +
N−1

∑
i=1

wi�φ(xi) (2.4)

Functions of the form shown in Equation 2.4 are called linear models since they

are still linear with respect to the parameters in W .

2.1.1 Activation Functions

The role of the activation functions is to transform the output from our classifier

into a desired shape. Figure 2.3 shows a graphical representation of the output of the

Sigmoid, TanH and ReLU functions as defined in this subsection. The Figure was

taken from a Caffe tutorial1. The simplest and most commonly used function often

used for the output of a regression problems is the identity activation function. It’s

range is between −∞ and ∞ and maps the values used as input to the activation to

themselves (see Equation 2.5). Quite often, we would like to control the range within

which we get the output of our model. To achieve, this we would use one of the

many activation functions. The most commonly used activation function is the Logistic

function (Equation 2.6). The approach is also known as the ’logistic trick’ (Williams,

2015a). It makes sure that the output will always be between 0 and 1. Hence, providing

1http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

Chapter 2. Background 8

Figure 2.3: The three main activation functions considered in this thesis.

a probabilistic notion. A linear model, as defined in the previous subsection combined

with the logistic trick results in the so called logistic regression.

However, in order to ensure that all the outputs will sum to one, we would need

to use a Softmax function (Equation 2.9). This is especially needed in scenarios with

many class options. Alternatively, it is sometimes useful to have output which ranges

between -1 and 1 instead. For example, in a neural network setting, the very negative

outputs will be forced to have close to zero representations if ran through a Sigmoid

function. This will prevent the neural network from learning. Thus, we would need

to use a hyperbolic tangent - TanH (see Equation 2.7). However, both functions will

suffer from vanishing gradient problems (Nielsen, 2015). Then, the rectified linear unit

function (Equation 2.8) can be used instead (Maas et al., 2013).

Iden(x) = x (2.5)

σ(x) =
1

1+ e−x (2.6)

TanH(x) =
2

1+ e−2x −1 (2.7)

ReLU(x) =

0, if x < 0

x, otherwise
(2.8)

So f tmax(x) =
ex j

∑
N
n=1 exn

(2.9)

Note, that they will all differentiate differently. For the sake of argument, we will

use the Sigmoid function for the proofs to follow, unless we state otherwise. Addi-

tionally, when using σ(.) to describe a concept we would immediately assume that the

same principle applies to all other functions, unless stated otherwise.

Chapter 2. Background 9

2.1.2 On-line parameter learning

The issue with the linear classifiers we have described so far is that they are very

computationally expensive. Assuming a large data set, we could instead use a more

sequential approach. Thus, we can use stochastic gradient descent. Also known as on-

line learning algorithm. It iteratively decreases the value of the weights by a fraction

of the derivative of the error with respect to that weight. The fraction is defined by a

learning rate parameter η which can be empirically selected.

wτ+1 = wτ−ηOED (2.10)

Our work, however is based on an improved variant of this. Namely on Adadelta

(Zeiler, 2012). That method dynamically updates the learning rate over time. We

find Adadelta quite successful due to the fact that it explores both first and second

order information. It accounts for the continual decay of the learning rate (η) during

training and automating the process of choosing an actual value. Moreover, it does not

introduce a significant overhead as opposed to quasi-Newton methods for optimisation,

for example.

2.1.3 Regularisation

In classification tasks we use a data set which needs to be split in training, vali-

dation and testing parts which are used in three separate phases. The notion is quite

intuitive. In the first phase, we use the training data set to train a network. We then

verify that it learns properly through the validation set in the second phase. We repeat

those two stages until we are confident enough that we have learnt all we can. Then,

we use it in a third phase on an unseen data represented as the test set. Sometimes, the

classifiers learn the training data too well, thus failing to determine the classes for the

data presented in a test set, resulting in an over-fit over the training data. In order to

prevent this, we can use different types of regularisation.

In linear classifiers, a regularisation term is added to the overall error function to

prevent over-fitting. This term constitutes of a regularisation coefficient λ and an error

function of the weights EW = 1
2W TW . To better understand this concept, consider a

scenario where we vary the value of λ in σ(λ(wT x + b)), where σ(.) is a Sigmoid

function. The higher the value, the more we over-train the data. In other words, our

classification turns into a step function. In contrast, the lower it is, the less we will learn

(see Figure 2.2). Note, that there could be other types of regularisation. For instance,

Chapter 2. Background 10

instead of multiplying w by itself (resulting in l2 regularisation) we could take w to the

power of 3,4 or else (Consider Figure 2.4). It is also easy to modify equation A.8 to

result in:

W = (λI +Φ
T

Φ)−1
Φ

TY (2.11)

Similarly, dropout is a simple technique where some of the weights are randomly

assigned to 0, thus encouraging the actual deletion of features over training. In fact,

(Kim, 2014) points out that this technique led to 2−4% accuracy increase in his pro-

posed solution for sentence classification.

Having considered the explained so far, we decided to use dropout and l2 regu-

larisation. In summary, dropout is known for preventing the co-adaptation of hidden

units during forward propagation and l2 regularisation is known for constraining the

varying of the overall uncertainty while learning weights by maintaining proper error

bars throughout training (see Fig 2.4).

Figure 2.4: ”Degree 14 Polynomial fit to N = 21 data points with increasing amounts of

l2 regularization. Data was generated from noise with variance σ2 = 4. The error bars,

representing the noise variance σ2, get wider as the fit gets smoother, since we are

ascribing more of the data variation to the noise.” (Murphy, 2012).

2.1.4 Cross Validation

The purpose of cross validation is to ensure that the trained model generalises well.

It is a technique which is commonly used when there is insufficient amount of training

data. Moreover, it splits the data into smaller subsets (usually 10) and uses them to

formulate training and validation subsets. Each subset is then used for validation in

Chapter 2. Background 11

separate from each other trainings. Finally, we use the mean of all results as the final

output.

2.2 Feed-forward Neural Networks

Although there are other approaches, like SVMs, for example, our work is in-

fluenced from the advances in Neural Networks. The most basic ones are the feed-

forward neural networks. The main idea behind them is to fix a set of basis functions

σ(.) and allow for their parametric forms to be adapted during training (Bishop, 2007).

In short, this model consists of multiple layers of logistic regressions with continuous

non-linearities, thus implying the need to tackle non-convex scenarios. A drawback of

this process is that it is very computationally expensive during its training phase. The

reason for this is the cost of mathematical operations for large collections of data.

2.2.1 Concepts

If we think of a neural network as an approach of tackling some D-dimensional in-

put as a linear combination of its D separate features, we can easily justify the purpose

of a non-linear activation function. Every basis function in a neural network is itself a

non-linear function of the inputs and the associated weights. We can thus refer to the

linear combinations of those inputs as the variable parameters, which are in fact what

we will continuously adapt during the training phase. In such a setting, the so called

hidden units are namely the non-linear activation functions. Hence, we can represent

this concept as:

a j =
D

∑
i=1

w(1)
ji xi +w(1)

j0 (2.12)

where (1) represents the first ’layer’ of a network and j = 1...M as defined in (Bishop,

2007). Then, we can represent a hidden unit as

z j = h(a j) (2.13)

So far this definition is exactly the same as a simple logistic regression. A single non-

linear function z j defines a single hidden unit in a neural network. The non-linear

functions h(.) are usually chosen as the logistic Sigmoid or the hyperbolic tangent

Chapter 2. Background 12

functions (Bishop, 2007). The outputs of those hidden units are linearly combined to

produce the output unit activations, defined as follows:

ak =
M

∑
j=1

w(2)
k j z j +w(2)

k0 (2.14)

where k = 1, . . . ,K is the number of outputs. These are the outputs for the second layer

of the network. Finally, we would like to use a Softmax (see Equation 2.9) to represent

a set of N possible outputs. yk = So f tmax(ak) will always be between 0 and 1 and

will sum up to 1 (Renals, 2015). Thus, suggesting a probabilistic structure where the

output with the highest value will essentially be chosen as the correct class for a given

input (see Figure 2.5). The process of propagating through a network starting from

the inputs and ending at the outputs can be referred to as ”forward propagation” of

information. The continuous sigmoidal non-linearities in the hidden units h(.) makes

Figure 2.5: A neural network with two hidden layers (Bishop, 2007). The image denotes

the direction of the network with a green arrow. It also represents the inputs as x1...D,

the weights as wMD where M refers to the neuron/unit the weight points to and D is the

actual neuron the weight comes from. z1...M is the set of hidden units. Both x0 and z0

are bias terms while y1...K are the actual outputs.

the neural network function differentiable with respect to the weights. This is essential

to the training phase as it allows us to model the differences between the output and

the targeted result. This difference can then be back propagated to the beginning of the

Chapter 2. Background 13

network and used to update the weights. This process is then repeated a chosen amount

of times which is in fact the definition of a training phase, also known as epoch.

Additionally, we define the network in Figure 2.5 as a two-layer neural network

since there are two layers of adaptive weights. Figure 2.6 shows the classification

problem solved by a feed-forward neural network. Note how it differentiates between

the classes in a rather more complicated setting than the one presented in Fiugre 2.1.

Figure 2.6: Two-class classification with neural network. Green line represents the

optimal decision boundary (Bishop, 2007).

2.2.2 Network Training

In the last subsection, we briefly mentioned the concept of training a neural net-

work. Here, we will explain that concept in a more detailed way. As already stated,

the way neural networks work is through forward and backward propagation. To do

that, however, we need to have some sort of way for measuring the difference between

the output of a network and the targeted outcome. This can be achieved by training

on a data set which contains a representation of some sort and its explanation - i.e.

to what class a pair of sentences belongs to. Depending on that measurement, there

exist different types of error functions - mean squared error, corss-entropy and others.

Consider Equation A.10, we can state that there is a relationship between the error and

the activation functions. However, to be more precise and show this, we should rewrite

Chapter 2. Background 14

A.10 as follows:

E(W) =
1
2

M

∑
m=1

(tm− ym)
2 (2.15)

Hence, ym = am, can be interpreted as the output equals the outcome of the final acti-

vation function. Thus, the sum-of-square errors (SSE) function is a result of taking the

derivative of the error function with respect to the activation function.

∂E
∂ak

= t2
k −2tkyk + y2

k = 2yk−2tk (2.16)

Thus:
∂E
∂ak

= yk− tk (2.17)

Similarly, if we consider a Bernoulli classification problem, we can use Equation A.16

to define the cross-entropy (CSE) error function as follows:

E(W) =−
N

∑
n=1
{tnln(yn)+(1− tn)ln(1− yn)} (2.18)

Note that in the equation above yn =σ(.), where σ(.) is the term used in Equation A.16.

Interestingly, (Simard et al., 2003) shows that using CSE for a classification problem

leads to faster training and better generalisation.

We would also like to pay attention to the multiclass classification problem. This

entails a classification where each input is associated with one of K different classes

which are mutually excluding. Our project is using exactly this approach as described

later in this thesis. The idea is that the target variables tk have K possible outcomes.

Thus, the probabilities 0-100 are split in K parts (in the case of this project 3) through

the adoption of a Softmax activation function. Then, the outputs from the network are

thought of as yk = p(tk = 1|x), thus the error function:

E(W) =−
N

∑
n=1

K

∑
k=1

tk
nln(yk

nn) (2.19)

Given the definitions of an error function and the appropriate choice of one for a certain

setting, the process of training consists of a continuous approach towards minimising

the value of a chosen error function. This, as we already explained, is achieved through

forward and backward propagation.

2.2.3 Parameter Optimisation

Minimising the error function essentially means finding the most suitable weights.

The graphical representation (see Figure 2.7) of optimisation from (Bishop, 2007) can

be particularly useful for visualising the explained so far.

Chapter 2. Background 15

Figure 2.7

Geometrical view of the error function E(w) as a

surface sitting over weight space (Bishop, 2007).

It is important to note that the vector OE(w) points towards the direction of in-

creasing error and we are interested in following the exact opposite (i.e. −OE(w)).

Since the weight space is non-convex, a small step towards the wrong direction could

lead to big variations. Although there are different ways for minimising the error (for

example with random search), we do this through optimising our weights with gradient

descent. Moreover, the highly nonlinear relationship between the weights and the er-

ror function leads to numerous places where the gradient becomes very small or in fact

vanishes. Thus, using ReLU as an activation function can prevent the network from

the vanishing gradients problem and also from constricting the output between 0 and

1 (Zhang and Wallace, 2015). There exist other ways of tackling this issue, however,

they are dependent on the setting and the task.

There could be a number of local minimas. In fact, circumventing them is a major

challenge in parameter optimisation. Bishop points out that in a standard two layer

feed-forward neural network which consists of M hidden units, there are M!2M equiv-

alent points for every existing point. Given the complexity of finding a global minima,

it is commonly accepted that using a local minima is proved to be sufficient. However,

it might be necessary to compare some number of local minimas before choosing one.

A commonly accepted way of finding the most appropriate weights is namely through

on-line parameter learning where we would initially set the weights to random values.

In practice, it turns out that setting these values close to zero end up giving the best

results.

2.2.4 Error Backpropagation

The process of sending information forward and backward throughout the training

phase of a neural network is known as error backpropagation, or backprop (Bishop,

Chapter 2. Background 16

Figure 2.8

”Illustration of the calculation of δ j for hidden unit

j by backpropagation of the δs from those units k to

which unit j sends connections. The blue arrow

denotes the direction of information flow during

forward propagation, and the red arrows indicate

the backward propagation of error information.”

(Bishop, 2007).

2007). As already discussed, the training process aims at minimising the error (also

known as cost) function. This can essentially be split into two stages. The first one

consists of finding the derivative of the error function with respect to the weights. The

second stage consists of the actual propagation of those derivatives backwards to the

initial weights. Luckily, the chain rule - a concept that entails the differentiation of a

function of a function, let us do that. This, essentially enables the actual update of the

initial weights which will then be propagated forward until the new evaluation of y,

which is iteratively compared with the targets. The simplest such technique involves

gradient descent (Rumelhart et al., 1985). To give a better notion we encourage the

reader to consider the SSE error function and a single hidden layer neural network.

The gradient of this error function with respect to some weights was derived in Equa-

tion A.19. This can be thought of as a product between a given difference and the input

itself. To address the second stage we adopt the chain rule as follows:

∂E(w)
∂w ji

=
∂E(w)

∂a j

∂a j

∂w ji
(2.20)

Hence, for expressiveness we can introduce ∂E(w)
∂a j

as δ j and ∂a j
∂w ji

as z j. Thus, Equa-

tion 2.20 becomes:
∂E(w)
∂w ji

= δ jz j (2.21)

The above equation states that we can use the output representation of some weight

and multiply it by the value of z which itself is the input representation of the weight.

Note that if we were considering the bias, then z = 1 (Rumelhart et al., 1985), (Bishop,

2007) and (Renals, 2015).

As we already showed δ j = y j− t j. If we use δ’s definition from above and hence

make use of Equation 2.20 and also consider Equations 2.13 and 2.14, we will see that

we can extend the backprop to the second stage of the previously defined algorithm

exactly as shown in (Rumelhart et al., 1985), (Bishop, 2007) and in (Renals, 2015).

Chapter 2. Background 17

Namely:

δ j = h′(a j)∑
k

wk jδk (2.22)

Therefore, we can apply the backpropagation algorithm to any feed-forward neural

network, regardless of the number of hidden layers and topology. In Renals (2015) the

error backpropagation algoritm is summarised very concisely into the follwoing steps:

1. Forward propagate given input vectors taken from the training set;

2. Compute the cost by comparing the outputs to the target values;

3. Evaluate the error signals δ j for every output;

4. Evaluate the error signals δ for every hidden unit;

5. Obtain the overall derivatives through a basic summation over the evaluated

derivatives for each training batch.

Backpropagation is considered as one of the breakthroughs in the modern representa-

tion of neural networks since it enables their wider adoption in a variety of domains.

Among the main reasons for this is backprop’s computational efficiency - O(W). This

follows naturally from the fact that the information is being passed through each layer

once until it reaches the initial one and thus lead to the weight updates.

2.2.5 Model Architectures

The concepts defined so far can be used in many different ways as briefly men-

tioned in the previous subsection. Different number of layers can be combined in dif-

ferent ways, some weights can skip hidden activation frontiers and communicate with

the ones after them. In addition, there could be different combinations of functions

which can be used. The concept of designing a neural network is referred to as model

building, where a given network architecture is called a model. The model optimisation

consists of fine-tuning the model parameters, also known as hyper-parameters - type

of activation function, what features are being used, the actual choosing of an architec-

ture, how to regularise and many others. There are a variety of approaches which can

be used, depending on the optimisation done. For example one could use grid search,

randomised approach or even Bayesian parameter optimisation techniques to choose

the most appropriate learning rate for the weights optimisation. The difficulty comes

from the lack of structural definition of how to optimise a network for a specific task.

Chapter 2. Background 18

Thus, the difficulty of problem solving using neural networks. Essentially, different

architectures perform differently for every task. The simple network in Figure 2.5 is

an example of a very basic neural network model.

2.3 Word Vectors

Having covered all of the above however, does not explain how to apply it to words

and sentences. To achieve this, we need to be able to represent words with numbers.

This section will cover the main approaches used in support of this thesis.

To begin with, we need to point out that the meaning of a word or a sentence is

very dependent on the context setting, as initially observed in (Harris, 1954). And

quite intuitively, a word can mean different things in different contexts. In fact, the

set of meaningful contexts can vary. For example, consider the word ”Cristina” in the

following sentence ”Cristina is coming! Evacuate your homes!”. The second sentence

suggests that the speaker refers to the hurricane. Similarly, ”Cristina is coming! Last

time I saw her was on that family meeting two years ago.” suggests that Cristina is a

human being, probably a relative the speaker has not seen for two years.

In the same sense, the goal of the word vectors is to provide the means for finding a

successful way to represent words. This is achieved by embedding a word into a vector

space (Jurafsky and Martin, 2014). Thus, we will use the term embedding to refer to

the vector representation of a word.

2.3.1 Word Representations

There are different ways to represent a word as a vector. N-grams, for example

model the probability of a word given its surrounding words. Essentially, modelling

the distributions representing words.

p(W) = Πi p(wi|w1, . . . ,wi−1) (2.23)

It is often simplified to trigrams as so:

p(W) = Πi p(wi|wi−2,wi−1) (2.24)

Essentially, this model defines a probabilistic distribution of a sequence of words.

An alternative approach is to use one-hot vectors. This means that every word is

represented as a vector which is as wide as the entire vocabulary. However, only the

Chapter 2. Background 19

word that is currently considered is represented as a one, everything else is set to 0.

The Bag-of-Words representation expands the previous idea. Here, each sentence is

represented as a vector as wide as the entire vocabulary and each index represents the

number of times the word corresponding to that index.

The issue with sparse vectors is their size where most of the values is zero. This

makes them very inefficient in machine learning systems. Another advantage of the

dense vectors is that their size, or more specifically, the lack of many zeros, means that

they can generalise better (Jurafsky and Martin, 2014). Thus, our work is based on

more complicated, yet dense models which are trained on neural network models as

explained next.

2.3.1.1 CBOW and Skip-gram

The idea behind these models is that a neural network learns words representations

by making the embeddings of neighbouring words similar to each other and less rel-

evant to other words. This thesis makes use of a software package called word2vec.

It implements a Continuous Bag-of-Words (CBOW) model and a skip-gram (Mikolov

et al., 2013), (Mikolov and Dean, 2013).

The idea behind skip-gram is to predict the context L from a given word. It achieves

it through learning two separate embeddings - namely one for the word projection and

2L for the context. If L=2 then a skip-gram will predict [wi−2, wi−1, wi+1, wi+2].

Those two embeddings are encoded in separate matrices - W and C. Each row of which

contains words each of which is |V |, where V is a given vocabulary. Every word is

represented with a one hot vector. Given that definition, we can safely assume that the

model is trying to predict P(Wcontext |Wtarget). Figure 2.9 shows the model for a context

window of L = 1, [wi−1, wi−2]. The input x contains one-hot vector representation for

a given word wt . The hidden layer, h is the so called projection layer. It represents

the word embeddings after multiplying wt by a randomly initialised weight matrix.

In mathematical notation, we can use Equation 2.4 where x will correspond to the

target word wt and W will be the weights. In the same way y will be the actual word

embeddings or the so called projection layer for wt . Moreover, since we use one-hot

vector representations, then the projection layer for word wt is going to be v j. Then,

for each of the context words, we multiply them by the context matrix C for each of

the 2L context words. The output is then normalised with a Softmax function (see

Equation 2.9).

CBOW is the mirror image of skip-grams (Jurafsky and Martin, 2014). They are

Chapter 2. Background 20

Figure 2.9: The skip-gram model (Mikolov et al., 2013), (Mikolov and Dean, 2013),

(Jurafsky and Martin, 2014). A word is denoted as wt , while x1...|V | are indexes of the

vector representation of wt . |V | is the vocabulary size. The size of the projection vector

is d and W|v|xd and Cdx|V | are embeddings matrices for the projection and the context

respectively.

modelling words based on the surrounding context. Depending on the task, each model

might prove more useful. According to (Mikolov et al., 2013) and (Mikolov and Dean,

2013), skip-gram works better with smaller data sets, however takes longer to train

than CBOW, which itself performs better for frequently occurring words. CBOW, for

example, can be useful for text classification where the input consists of two sentences

and the task is to classify then under certain criteria.

2.3.2 Semantic Composition

Having covered the notion of modelling words with numbers, it seems natural to

attempt to model the semantic composition through the help of algebraic operators

such as addition or multiplication. In fact, (Mitchell and Lapata, 2010) show how to do

this. Logically, we split the means of connecting words’ or sentences’ compositions to

two, and namely additive and multiplicative models. Table 2.10 shows a basic example

of the relationships between a collection of words. We define an additive model as

p = Au+ Bv. Then, the following instances of additive models exist as defined in

(Lapata, 2016):

Chapter 2. Background 21

tune answer effectiveness competence build

reasonable 1 7 3 11 5

complexity 2 9 5 5 1

issue 1 14 6 8 0

Figure 2.10: Word context matrix (Lapata, 2016).

1. p = u+ v, hence reasonable+ complexity = [3 16 8 16 6];

2. p = u+ v+∑i ni, thus reasonable+ complexity+ issue = [4 30 14 24 6];

3. p=αu+βv, therefore 0.4∗reasonable+0.6∗complexity= [1.6 8.2 4.2 7.4 2.6];

4. p = v, where complexity = [2 9 5 5 1].

Similarly, we define the multiplicative model as p = Cuv and extend to the following

instances:

1. p = u� v, hence reasonable� complexity = [2 63 15 55 5];

2. p = u⊗ v, thus reasonable⊗ complexity =

2 9 5 5 1

14 63 35 35 7

6 27 15 15 3

22 99 55 55 11

10 45 25 25 5

;

3. p = u~ v, therefore reasonable~ complexity = [160 94 110 106 124].

The last item from the multiplicative models is a type of 1D convolution known as a

circular convolution. For further details on how to compute it, we refer the reader to

Appendix A.2.1.

2.3.2.1 Global Vectors

Even though the work proposed in (Mikolov et al., 2013) achieves very accurate

analytical representation of words, it fails to use the statistical information embedded

in texts. Using global vectors for word representations (GloVe) (Pennington et al.,

2014), however proposes an approach which can achieve both good analytical and

statistical representation of word vectors. Unlike CBOW and skip-gram, it uses dense

vector representation as its input. GloVe uses the ratio between two probabilities of

Chapter 2. Background 22

words to appear in a given context. It then uses these to compare the ratios between

two words in the same context. (Pennington et al., 2014) shows a detailed definition

of their model which is proved to use log(1+Xik) for some word i under a context k.

They train their model against a weighted least squares regression function, defined as:

E(W) =
V

∑
i, j=1

φ(Xi j)(wT
i w̃ j +bi + b̃ j− logXi j)

2 (2.25)

Where (Pennington et al., 2014) defines φ as:

φ(x) =

(x
xmax

), if x < xmax

1, otherwise
(2.26)

According to (Pennington et al., 2014) GloVe seems to perform better in most tasks

than word2vec.

2.4 Convolutional Neural Networks

2.4.1 Motivation

Although feed-forward neural network are good at specific tasks yet they fail to

achieve human-like or better accuracy. Among the main reasons for this is that they

consider their input as equally important and assume that each dimension is equally

related with the rest, or in other words it relies on dense weights representation. Thus,

the size of the parameters becomes quickly infeasible.

Feed-forward networks do not consider the local regional importance in a given

input. A rough notion about this can be created via a real-life example. Usually, in

a book, the beginning often does not provide much information about how the story

ends. Similarly, in a sentence, reading the first few words might not reveal enough

information to adequately reason about its entire meaning. Thus, instead of thinking

about the end of a book we can focus on its beginning and the immediate follow-ups.

Thus discarding some of the unreasonable assumptions we make. Quite similarly, con-

volutional neural networks can adequately address that issue by adopting sparse weight

relationship between the input and the output (LeCun et al., 1989). As a concept, they

introduce a window (also known as kernel) through which they ”convolute the con-

text of a word with the word itself”2. A convolution is in fact quite similar to a cross

2Citation from T. Davchev’s IRP report.

Chapter 2. Background 23

correlation. However, it reverts the second function and then applies cross correlation

(for a more mathematical notion, see Appendix A.2.1). Moreover, we define a simple

convolution as:

(x∗g)(i) =
∞

∑
j=−∞

g(j)(i− j) (2.27)

Consider Figure 2.12 for an intuition of what a convolution is.

Figure 2.11: ”An example of 2-D convolution without kernel-ipping. In this case we re-

strict the output to only positions where the kernel lies entirely within the image, called

validconvolution in some contexts. We draw boxes with arrows to indicate how the

upper-left element of the output tensor is formed by applying the kernel to the corre-

sponding upper-left region of the input tensor” (Bengio and Courville, 2016)

Chapter 2. Background 24

2.4.2 A different perspective

(Bishop, 2007) defines three main mechanisms that enable CNNs to incorporate

these relationships and namely: ”(i) local receptive fields, (ii) weight sharing, and (iii)

pooling”. These three concepts come exactly from the sparsifying of the weights. We

can well see these if we thought of a CNN as a feed-forward network for a moment

(hinted from a lecture by Ali Ghodsi3). If we, then imagine a given set of inputs and

a given set of outputs (as shown in Figure 2.12), we can then introduce the notion

of locality. Namely, neighbouring inputs, perceived as local receptive fields produce

a single output. Note the number of local parameters per single convolution will be

defined by the actual kernel. The resulting parameters that connect all inputs with

outputs belong to a single kernel, hence the notion of sharing. If we were considering

a feed-forward neural network, the number of weights would have been 12 (i.e. 4 by 3).

However, here the number of the parameters is in fact 6. Sparsity is a very interesting

and actively researched area in the field of Machine Learning, it finds its applications

in other topics like low-rank matrix approximation as discussed in the last chapter of

this thesis.

Figure 2.12: Notion of how CNNs function.

After a convolution is applied to the two functions (the input and the kernel), we

apply a non-linearity function which results in the actual output in a similar way as

with feed-forward neural networks where we applied a Sigmoid or a ReLU function,

for example. This is called a Detector layer (Bengio and Courville, 2016). After this,
3https://goo.gl/bX8dgf

Chapter 2. Background 25

we apply the third mechanism from (Bishop, 2007) and namely pooling. In a way,

pooling summarises the resulted outputs by looking for specific criteria. However, we

leave the further details on that subject to a later subsection.

2.4.3 In depth analysis

Using CNNs requires the manual selection of a number of hyper-parameters. Thus,

choosing the best for a given architecture can prove to be a tedious task. The work of Ye

Zhang (Zhang and Wallace, 2015) is a good reference point for sentence classification

in particular. Regardless, we will give a brief notion of the type of considerations that

needs to be made throughout the fine-tuning of a CNN model. The structure of this

subsection is influenced from (Britz, 2015).

2.4.3.1 Wide and narrow convolutions

In practice, it is common technique to pad sentences in order to ensure uniform

length of the input as well as to account for striding through the first n sentences when

the window size is larger than n. The reason for padding with zeros and not with the

nearest neighbours, for example, is not entirely motivated in the literature. We think

that using a zeros ensures that the padded cells will be ignored when multiplying all

elements from a window. Although it should be also possible to pad with the nearest

neighbours, there will be certain risk to double the padded neighbours’ importance.

Regardless, the common practice is to use zeros instead of anything else. Using zero-

padding is often referred to as wide convolutions as opposed to not using zero-padding

- narrow convolutions (Britz, 2015). The size of the output depends on the adoption

Figure 2.13: Zero-padding example (Britz, 2015).

of wide convolution as shown in Figure 2.13. More generally, the output size can be

Chapter 2. Background 26

computed with the following formula:

|out put|= (|xin|+2×|padding|− | f ilter|)+1 (2.28)

2.4.3.2 Strides

The shift of the filter when going through the input is defined by the stride size.

The larger the stride, the more independent the features/local regions will be from one

another. In other words, it leads to a smaller output size. Thus, a common stride size

for NLP tasks in general is 1. Moreover, (Britz, 2015) points out that a larger stride

size can make a CNN behave more like a Recursive Neural Network - id est behave

more like a tree.

2.4.3.3 Pooling Layer

Pooling layers are best thought of as summarising the outputs of a convolutional

layer through some function. They achieve this through various techniques. A widely

adopted one is the k-max pooling, which selects only the k max outputs from a given

filter output. In fact, it a commonly used approach is to pool over a small window

instead of the entire feature map (see Figure 2.14 for an example of 1-max pooling4).

Therefore, pooling can be thought of the means of reducing the dimensionality of some

input. This, however would mean, that backpropagation will only update the values of

those k selected max features, thus leading to loss of information. Although there are

other pooling techniques, such as the Lp pooling or average pooling, we will use the

1-max pooling throughout this dissertation as this is the commonly accepted strategy

(Zhang and Wallace, 2015).

Moreover, pooling layers are known to provide some useful properties. For ex-

ample, it makes a feature invariant to local translation3. As an example consider Fig-

ure 2.15. Imagine that the content of the figure can be logically split in two parts- a left

and a right one. Consider the left structure with four circled representations and three

on top. Let us assume that the ones on the bottom are the contents of a feature map.

Therefore, the three on top will be the results after applying 1-max pooling. Shifting

the contents of that structure by one, results in the drawing from the right part of the

figure. Notice how all of the circles in the bottom have now have completely different

values compared to the ones in the left but the upper three have not changed that much

4http://cs231n.github.io/convolutional-networks/#pool

Chapter 2. Background 27

Figure 2.14: 1-max pooling.

- only one of the three data points was in fact changed3. This property is in fact very

useful for the purpose of our work because we are not as interested in learning if a

given word is in the same position as before but in fact we would like to know if that

word exists in a specific input we are looking at. The example in Figure 2.15 can be

also used to show downsampling-i.e. the 4 inputs result in 3.

Figure 2.15: Translation invariance.

2.4.3.4 Channels

Channels enable the different representation of the input data. For example, in

Vision, those often are the red, green and blue variants of an image. In NLP and NLU,

these could be a word2vec and GloVe representations of the data, or have different

ways of conveying the same information, for example a sentence translated in various

languages (Britz, 2015).

Chapter 2. Background 28

2.4.4 Backpropagation

To train a CNN, we need to be able to compute the gradient with respect to the

output as well as the gradient with respect to the kernel function given the gradient with

respect to the output function. This, however, can be tricky as there is an itneresting

property that needs to be considered. Namely, we need to bare in mind that we would

essentially have to rotate the weight matrix in order to accurately compute the gradient.

The reason for this is that the last element of a kernel striding over a given input results

in the first element in the feature map as shown in Figure 2.16. Regardless, a more

detailed, mathematical definition of backpropagataion is described in Appendix A.2.2.

Figure 2.16: The last element of a kernel window is the first element in a feature map.

Here, the stars represent 0-padding and each dot is a value.

2.4.5 Simple architecture of a CNN for NLU

This subsection aim at introducing the concept of CNNs in the light of NLU. Con-

sider the word2vec or GloVe embeddings we discussed in the previous section. Essen-

tially, we can use them to represent some text as a matrix. More specifically, consider

the sentence ”Wait for the video and don’t rent it” (Kim, 2014). Each word can be rep-

resented as a 1×|V | vector, where |V | is the dimensionality of the embedding - often

set to 300. In practice, a sentence of length n is represented with the ids associated with

the 300 dimensional vector representations of each word. The input sentence would

Chapter 2. Background 29

thus look like:

M =
0 31 45 9 101 0
0 131 5 452 0 0
...
...
0 0 623 1 0 0

(2.29)

Figure 2.17 shows a simple CNN architecture. The first matrix shows the vector

representations of the same sentence.

Figure 2.17: Model architecture with two channels for an example sentence (Zhang and

Wallace, 2015).

Consider the following notation from (Kim, 2014), we define a sentence x1:n as:

x1:n = x1⊕ x2⊕ . . .⊕ xn (2.30)

Convoluting a word xi with its context is achieved through sliding a window, which size

is defined empirically. To account for the full representation of every word we set this

window to be always of the width of k = |V |. However, it’s height can vary. Formally,

a convolution is defined by the multiplication of a filter w ∈Rhk by a window of words

xi:i+h−1, where h defines the height of the window. This results in a new feature. To

compute it, we use a modification of Equation 2.4, we can introduce Equation 2.27 as:

ci = f (W � xi:i+h−1 +b) (2.31)

Chapter 2. Background 30

This operation is applied to a number of windows by sliding the window down by a

given stride length until it reaches the end. In a cs224d lecture5, Socher points out that

it is useful to have different height sizes. Thus, forming a feature map c = [c1, . . . ,c2].

Every feature map will then share the same weights with the rest. This also ensures a

translation invariance, since it guarantees that regardless of where a given combination

of words is located in a sentence, they will convey the same features. Moreover, every

hidden layer can consist of multiple feature maps. Figure 2.17 shows this concept

through the coloured rectangles. The outcome can be thought of some type of summary

of the associated word compilation. That is usually achieved by passing the output

through an additional layer, also known as a pooling layer. A very popular one is the

1-max pooling operation (Collobert et al., 2011).

2.5 Siamese Model

The Siamese architecture (Bromley et al., 1993) ranks the similarity between two

inputs. It has mainly proved to be very useful in Vision tasks (Koch, 2015). Figure 2.18

is an example for such architecture. These models work by considering two distinct

inputs through two separate neural networks (CNNs in the case of the figure referenced

above) which are being trained against the same cost function. The network has two

main features. Namely, it is symmetric and consistent. For example if a sentence S1 is

the hypothesis and a sentence S2 is the premise, the network will learn to represent that

pair in the same way even if S2 was the hypothesis and S1 the premise. In other words

it will learn to represent an input which is split in two in the same way, regardless of

which conjoining layer a part belongs to. Moreover, it guarantees that the relationship

between the two sentences is going to be mapped in the same location in feature space

since they are trained against the same cost function.

5http://cs224d.stanford.edu/lectures/CS224d-Lecture13.pdf

Chapter 2. Background 31

Figure 2.18: Siamese Architecture which replicates the top and bottom sections to form

twin networks. The first two matrices represent two inputs, regardless of their nature.

The second layer of vectors are the feature maps, forming a CNN respectively with the

pooling layers.

Chapter 3

Modelling Entailment

The aim of this project is to find a simple yet successful way for sentence classifica-

tion and more specifically for recognising entailment relations. We compare two neural

network approaches and namely RNN-based architectures as proposed by Rocktäschel

et al. (2015) and convolutional neural networks.

Throughout the course of work we begun with a thorough study of the SNLI data

set. This helped us learn that the data set was comprised in such a way that it had more

than one different hypothesis for every premise and that the data set was large enough

to enable neural network training over GPUs rather than CPUs. This short study was

followed by the actual implementation of the convolutional neural network this entire

project is based on. That included the actual set up on the MSc students’ cluster which

turned out not to be a trivial task due to the type of the Unix operating system the

cluster was running on, the permissions we had and the fact that we were the first from

the MSc cohort who had to do that set up along with the numerous dependencies that

had to be installed and configured.

3.1 Entailment Relations with SNLI

The accurate processing of natural languages requires the ability to adequately de-

termine the semantic relationship between a pair of sentences.

Currently, the largest known data set of labelled pairs is introduced through the

Stanford Natural Language Inference corpus (SNLI) by Bowman et al. (2015). It con-

sists of 570 000 pairs of sentences which have been annotated by humans.

Figure 3.11 consists of a few examples from SNLI that can help the reader to bet-

1http://nlp.stanford.edu/projects/snli/

32

Chapter 3. Modelling Entailment 33

Figure 3.1: Example pairs taken from the devtest portion of the SNLI corpus.

ter understand the concept behind RTE. The sentences under ’Text’ are the so called

premises. These can be related in one of three ways with the given hypotheses (i.e. the

sentences in the third column). Each row represents a labelled relationship between

the given pairs. Another way of thinking about this is as a classification problem - the

pairs can be one of three - contradicting, neutral or entailed. Therefore, the figure is

said to illustrate 5 separate of each other examples. The relationship between the two

sentences is defined by human annotators also known as turkers. In Figure 3.1, the

column between the two sentences shows the judgements (each of which represented

by a character) of five independent turkers as well as a final consensus judgement. For

example, the first entry contains of a premise - ”A man inspects the uniform of a figure

in some East Asian country.” and a hypothesis - ”The man is sleeping”. All five turkers

have labelled the relationship between these two sentences with C (for contradiction).

Thaking the average of their answers leads to labelling the overall judgements as being

a ”contradiction”.

The field is constantly observing more and more precise ways of solving this prob-

lem. It has seen a number of state-of-the-art neural models including the one pro-

posed by Rocktäschel et al. (2015) which achieves 80.9% accuracy with its baseline

attention-based LSTM model on the Stanford Natural Language Inference (SNLI) data

set. There are more complicated models which in fact achieve more than 87% (87.3%

to be precise (Munkhdalai and Yu, 2016)). Their result comes very close to the cur-

rently known human accuracy on SNLI - 89%.

Chapter 3. Modelling Entailment 34

3.2 Simple Model

To ensure our work was correct, we used a model equivalent to the already pub-

lished work by Kim (2014) (See Figure 3.2). The source code of their research was

made available2. Thus, we used it as our starting point. In addition, we used the Movie

Figure 3.2: Model architecture with two channels for an example sentence (Kim, 2014).

Review data set (Pang and Lee, 2005) and compared the results from our local set up

with the ones reported in Kim (2014) and Zhang and Wallace (2015).

3.2.1 Implementation and Code Re-factoring

Their implementation, however, was not very suitable for our aims. The code was

lacking a structure which is able to handle any further extensions. There were no

help functions, hierarchical structure presented or in fact almost no logical separation

in their implementation. For example, the architecture, mathematical operators, data

pre-processing were all considered as a single train of thought and thus implemented

in one method. The entire implementation was done in a single method which was

called from the main function. There was, however, a good separation of the different

layers which were implemented in a separate file and were modified primarily from

deeplearning.net3 and a couple of other sources which are referenced in the code itself.

Therefore, we kept that single file intact.

2https://github.com/yoonkim/CNN sentence
3http://www.deeplearning.net

Chapter 3. Modelling Entailment 35

However, we had to re-factor the majority of the code and make it scalable as

well as easier to read. Moreover, we needed to be able to execute it multiple times

with different settings. In addition, we needed something that is reusable. Thus, we

referred to Richards (2015) as a guideline.

To achieve our goal, we could have used a Layered Architecture which would have

essentially guaranteed the ability to separate the business logic - namely separating the

adopted layers’ class from the actual functionality. However, that seemed quite similar

to what we already had- a cumbersome, difficult to modify and extend architecture

which would not serve as a backbone to our future work but rather as a burden. On the

other side, it would have enabled a system that is easier to test, something which turned

out to be very important when working in Theano. Regardless, a monolithic, tightly

coupled implementation would have had a negative impact on the overall scalability

and usability of our work.

Using an Event-driven architecture, on the other hand, was closer to what we

needed. We wanted to have a mediator which could essentially choose the correct

model and run a training without having to change a lot. However, that architecture

is more suitable for systems which have a number of steps and require some level

of orchestration to guide the processes through. We did not have such requirements.

If we were to choose that architecture, we would have had to introduce a number of

very similar to each other functions. That, essentially, would have enabled us to call

them from some sort of a host or an event-mediator, as per the definition of that model.

Moreover, that implied the need for splitting the actual business logic of a single neural

network model, thus promoting the design of an asynchronous system. This, immedi-

ately increases the difficulty of implementation and limits the testability of our work.

Since we are using Theano, we had to make sure that testing is as easy and as accessi-

ble as possible. On the bright side, this architecture would have essentially allowed us

to quickly implement new, reliable functionality and easily adapt our system to work

with it. Regardless, as already stated, we needed something that promotes easy testing

and this architecture does not.

We wanted to have a core system which could accept various models, different

settings and yet enable the adoption of different data sets. Thus, the microkernel ar-

chitecture seemed as something that can fit to our needs. Behind the very concept of

a microkernel architecture is the so called plug-in components which contained their

own features and custom code, extending the functionality of a system and producing

additional business logic. That is exactly what we wanted to have. We needed tools for

Chapter 3. Modelling Entailment 36

pre-processing different data sets, different types of embeddings, introduce new neural

network models and yet in the core, use the same definitions of neural network layers,

mathematical operators and means of testing. However, this architecture introduces

an extra complication. The system must always keep track of what is available and

how to access it. This would have essentially meant maintaining some XML or sim-

ilar file which is kept updated with the currently available plug-ins, for example, and

that affects scalability. In contrast, we need to be able to create a lot of models and

easily change and pick between them. Therefore, the lack of scalability as well as the

potential of over-complicating the task drove us away from this architecture.

Thus, after a series of trials, we ended up designing our own. We split the code in

roughly three main parts, similar to the basic MVC architecture. However, instead of

View, we had our different CNN models. In addition, the controller was split into sub-

parts and namely an initialisation part responsible for handling the different settings

available for a chosen view and data pre-processing part, which took care of processing

and setting up the data sets as per the requirements for the model selected. It should

be very clear that there is a subtle difference between the model from the Model-

View Controller architecture and the models that we refer to in this thesis. The latter

are architectural models which address the actual problem we solve in the context of

neural networks. Thus, they model the structure of the NN that we build. The model

of our system architecture itself addresses the data and the very logic behind it. In our

case these were the SNLI and the MR data sets. From now on, we will refer to the

architectural decisions related with the modelling of the neural networks as ’model’.

Figure 3.3 shows a tree structure representation of the logic separation for the project.

Figure 3.3: Tree structure of the project.

After re-factoring the code and splitting the logic so that it serves our purpose, we

wanted to test it against results which were already listed in Kim (2014) and Zhang and

Chapter 3. Modelling Entailment 37

Hyper-parameter Value

learning rate method Adadelta

learning rate decay 0.95

hidden units [100,2]

number of epochs 25

filter region [3,4,5]

batch size 50

s2 9

dropout rate 0.5

Figure 3.4: Hyper-parameters as reported in (Kim, 2014).

Wallace (2015). To achieve this, we used the MR data set4. We ran a 10-fold cross vali-

dation (CV) and used word2vec as embeddings. Moreover, we trained against different

filter heights, namely 5 and 7, as adopted from the aforementioned publications. We

fixed the hyper-parameters reported in Table 3.4 and compared our results to the ones

reported in Zhang and Wallace (2015). We varied the filter heights and compared the

outcome with the baseline reports. We tried {[3,4,5], [7,7,7], [7,7,7,7]}. We also com-

pared our results against different activation functions: [TanH, Iden,ReLU,Sigmoid]

as well as both static and non-static word2vec input representations. We ran between

5 and 10 jobs per setting. The number varied as some of the jobs failed due to lack

of memory allocated on the cluster’s GPUs. For all of the tests described above, our

results were within the boundaries reported in Zhang and Wallace (2015). Once we

were sure the re-factored implementation from Kim (2014) worked correctly, we were

ready to extend that to the purposes of our thesis.

3.3 Building Extended Models

3.3.1 Accommodating the model to work with SNLI

The next step towards our goal was to use the model described above with SNLI.

To achieve this, we had to pre-process the SNLI data set. That meant creating a vocab-

ulary with all words and embedding them with word2vec or GloVe. We concatenated

the hypothesis and the premise sentences together and embedded them as a single in-

4https://github.com/yoonkim/CNN sentence

Chapter 3. Modelling Entailment 38

put. In addition, we had to also account for representing the actual labels and think

about conveying any additional information we might need in future. We decided to

use [0,1,2] as the classification labels. We used 0 for pairs which were labelled as

’entailment’, 1 for sentences which were ’neutral’ and 2 for the contradicting ones.

Moreover, we realised that it will be useful to keep track of the number of words exist-

ing in a pair. That would essentially help us when padding the data, for example. We

also keep track of the type of data set the pair belongs to: i.e. train, test or validation.

We also kept an index helping us refer to that particular text.

Unlike Kim (2014), we decided to use GloVe for the embeddings as global vectors

tend to perform better than word2vec, in general (Pennington et al., 2014). In this

scenario, we did not have to use cross-validation as SNLI has its own validation set

which meant we had to account for that as well. This defined our baseline model

which served as a comparison to our progress thereon. Visually, it looked very similar

to Figure 3.2. However, instead of two channels as shown on that figure, it had only

one. We used static vector representations as per the paper.

Overall, we did not expect to obtain high results. It was a basic CNN architec-

ture and our baseline was built with much smaller data sets in mind. Moreover, the

existence of the same premises for different labels was going to interfere with the cor-

rectness of the network. Instead, we could use that to our advantage and account for

the existence of a premise and hypothesis. Thus, introducing the concept of the next

subsection.

3.3.2 Extending the Model

We extend on the basic model above by introducing a Siamese-like architecture.

In the core of our work is that we split the premise and the hypothesis and use them

as inputs in two separate CNNs. Hence, taking into account the different roles of both

sentences. We process their outputs and use their convolved representation as input to

a third CNN which acts as the actual classifier to our task as described in Kim (2014).

This is then followed by a single feed-forward layer and a Softmax function.

3.3.3 Siamese-like 3-CNN-wide structure

As already claimed, we do not think that the basic model will produce good results.

Having the premise and hypothesis concatenated and used as a single input means that

half of the input is the same regardless of the class under which the relationships fall

Chapter 3. Modelling Entailment 39

into. This will essentially have a negative effect over the shared weights. Thus, split-

ting the two sentences and learning two separate weights for each of them made a lot

of sense. However, this would still not be enough. In order to learn from both sen-

tences simultaneously, we need to make sure that we train them against the same cost

function. That way we would allow for our model to learn from both sentence repre-

sentations. So far, this model inherits a lot from the Siamese architecture proposed in

Bromley et al. (1993). Alternatively, we could have trained both sentences separately

on separate cost functions and then use them as some sort of embedding representa-

tions in a third CNN. However, that would not learn anything as those sentences would

have been trained on their own, thus ignoring the correlation between a premise and a

hypothesis.

Regardless, the proposed by us structure so far, does not account for the com-

bined/full representation of the sentence pairs. Even though the premise and hypoth-

esis were trained against the same function they were still treated as entirely separate

inputs. We wanted to represent the relationship between the two sentences with a math-

ematically expressed interaction between them. Thus, we needed a way of combining

them through another layer. We used a third CNN which accepts as input the concate-

nation of the two outputs from the previous two CNNs. We then treated the problem

as our initial model. Hence, we used a feed-forward layer and classify the output as

before. Figure 3.5 shows a graphical representation of the resulted architecture.

3.3.4 Additive and Multiplicative Models

As we already hinted, a good way of modelling the relationship between two cor-

relating sentences is through exploiting their semantic composition with basic mathe-

matical operations (Mitchell and Lapata, 2010). Thus, we implemented a number of

additive and multiplicative functions as described in this subsection.

3.3.4.1 Additive Models

The logical composition of languages enables the construction of complex struc-

tures through simpler ones. A property explained in Partee (1995) as “The meaning

of a whole is a function of the meaning of the parts”. To model this relationship suc-

cessfully we assume that both sentences have the same dimensionality, are in the same

language and use the same means of representation. That enables us to introduce sim-

ple compositional and additive models. We begin with element-wise, weighted and

Chapter 3. Modelling Entailment 40

non-weighted addition and subtraction. This, however is based on very strong assump-

tions. As pointed out by Mitchell and Lapata, we are assuming that different parts of

speech exist in the same dimensionality which itself implies the equality of the differ-

ent parts of speech. However, we must take into account that we are not working with

the words themselves but rather with their representations which were word2vec or

GloVe embeddings that have been additionally processed through two separate CNNs.

It is thus safe to assume that they can come from the same-dimensional space. Hence,

we lose the strength of the assumptions made so far. If that is indeed the case, then

weighing the vector representations should not impose any benefit whatsoever. In con-

trast, subtracting the two vectors will introduce a distinct representation between both

vectors. Hence, it will improve the accuracy of the model. The work in Mitchell and

Lapata (2010) summarises the functionality of additive models as “blending together

the constituents they are composed from”.

3.3.4.2 Multiplicative Models

All of the methods described above classify as additive models. We do consider

multiplicative models as well. In other words, we will scale one vector with its rele-

vance to the other. This, however, does not seem right for the purpose of our task. As

already noted, the data set we observe considers the same premise with different hy-

pothesis, leading to different classifications thereby. Scaling with relevance will deem

poor results for those scenarios. Which will endorse a significant dose of randomness.

Elementwise multiplication is a symmetric function, hence it disregards the word or-

der and syntax (Mitchell and Lapata, 2010). Circular convolution is another member

of the multiplicative models. It aims at correcting the length of the vector but does not

affect its direction. This again seems unlikely to improve the performance for our task.

However, we base this discussion on a number of assumptions. Thus, we decided to

implement them all and analyse the outcome of using them in the next chapter.

Although most of the models described above were straightforward to implement

given the project architecture we use and the correctness of our work, the circular

convolution turned out to be not a trivial task. The main reason for this was that

Theano did not support any 1D convolutions at all and the existing implementations

in Lasagne did not seem to achieve what we needed. Therefore, we had to find a

way of implementing our own function by making use of the already existing Theano

functionality. The solution was to perform a 2D convolution over the two tensors.

However we had to revert the second one and account for tensors with odd width.

Chapter 3. Modelling Entailment 41

Even though odd numbered tensors are unlikely for the purpose of our task (as a tensor

is comprised of two equally sized vectors), we aim at re-using this function in future.

Finally, we had to sum over the first axis, reshape and revert the output.

3.3.4.3 Extended Models

A logical extension of the models defined so far is a basic permutation of the com-

binations in between them. For example, we can populate a vector with n different

outputs from applying n different operations. That, essentially, can increase the width

of the input to the third CNN which will increase the number of parameters and thus

potentially improve the performance as it extends the specificity of the problem learnt.

Moreover, it meant that we can combine different outputs. This meant taking advan-

tage of the benefits from using both addition and subtraction, for example. Using

concatenation in collaboration with the two would allow for further increasing the size

of the parameters, which can proof useful. In contrast, this will further complicate the

task and hence increase the correlation between the hyper-parameters we will need to

optimise.

3.4 Summary

The novelty of this model, even though it introduces a large number of parameters,

is its simplicity. Essentially, we are using the same architecture for the 3 CNNs and

connect them in a sensible way. If we compare this to the Attention-based LSTM

model introduced in Rocktäschel et al. (2015), we attempt to show that modelling

entailment as a task has been over-complicated to accommodate a model which does

not perform as well in classification tasks. In the next chapter, we will evaluate our

model through series of tests and hyper-parameter optimisations in attempt to show that

our model is both simple and performs better than the one presented in Rocktäschel

et al. (2015).

Chapter 3. Modelling Entailment 42

Figure 3.5: Siamese-like 3-CNN-wide model.

Chapter 4

Test and Evaluation

Having set a model to base our work on, we used the SNLI data set to obtain our

first results. As already stated, we suspected that they will not be very good given the

simplicity of the model. After improving the model to a Siamese-like 3-CNN-wide

neural network and optimising the hyper parameters, we ended up achieving a state-

of-the-art result of 81.26%. We used rectified linear units, filter windows (height) of

[2,3,4,5] with 100 feature maps each, a dropout rate of 0.13, l2 constraint (s in the

code) of 3, learning rate decay of 0.95, a mini batch size of 200, non-static word2vec

embeddings, 25 × 64 ratio of the height to width input for the third CNN.

4.1 Initial Tests

4.1.1 Baseline Model

As a baseline, we used the CNN-static model from Kim (2014) along with the same

settings for the hyper-parameters as in their implementation (see Table 3.4). A CNN

model is defined as static if it uses pre-trained word2vec embeddings where all words

are kept static. Similarly, we define a model that fine-tunes the pre-trained vectors for

each task as non-static (Kim, 2014). However, we set the output units to 3 instead of 2.

We obtained an average result of 66.55% over the test data set (results varied between

66.11% - 66.99%).

Despite the low outcome, we used grid search to see if we can optimise it. And

indeed we did, or at least to a certain degree. For example, given that the size of the

data set was substantially larger than SST-2 (the data set used in Kim (2014)), reducing

the dropout improved the results obtained by roughly 2% (See Table 4.3). In addition,

43

Chapter 4. Test and Evaluation 44

increasing the batch size from 50 to 200 decreased the run time of each epoch from

313ms to about 210ms as shown in Table 4.2. It was, however, compulsory to use

mini-batches given the size of the dataset and the limited resources we had.

Figure 4.1: Achieved results for different operators.

In addition, given that we based our work on Kim’s implementation, we are also

using Adadelta. Thus, we didn’t have to worry about decreasing the learning rate af-

ter increasing the batch size. Additionally, we used GloVe (Pennington et al., 2014)

as opposed to word2vec (Mikolov et al., 2013) for the embeddings. This meant im-

plementing scripts for preprocessing both the SNLI text files and embedding the result

using GloVe. Overall, the best result we achieved was 68.11% after completely remov-

ing the dropout (See Table 4.3). In addition, we compared the performance between

Batch Size Time per epoch

50 313ms

100 260ms

150 239ms

200 210ms

Figure 4.2: Run time per epoch with respect to batch size.

Chapter 4. Test and Evaluation 45

using a ReLU and Tanh as a non-linear function. As expected, the former performed

better, TanH, in general is very difficult to adjust. For comparisons refer to Figure 4.3

and 4.4.

Dropout Train Validation Test

0.5 69.24% 66.09% 66.55%

0.2 72.69% 66.91% 67.32%

0.1 73.71% 65.92% 66.55%

0.0 75.25% 67.57% 68.13%
0.7 66.44% 64.62% 64.64%

Figure 4.3: ReLU as a non-linear function.

Dropout Train Validation Test

0.5 70.96% 68.05% 63.76%

0.2 74.00% 66.91% 58.48%

0.1 79.99% 67.56% 61.96%

0.0 75.86% 67.44% 62.04%

0.7 70.84% 67.35% 64.60%

Figure 4.4: Tanh as a non-linear function.

4.1.2 Extended Model

Next, we extended the model by implementing a Siamese network. we used sep-

arate CNNs for the premise and the hypothesis. However, the output of each of them

was concatenated and used as an input to a third CNN which was then followed by

a feed-forward neural network as per the initial model (see Figure 3.5). All three

CNNs were trained against the same cost function simultaneously. This substantially

improved the accuracy with about 10%. We achieved 77.22% with the adopted param-

eters used in Kim (2014) and 77.99% using 0.2 dropout as shown in Figure 4.5. In this

section onwards we are assuming a fixed dropout of 0.2 unless otherwise stated. We

are also using a batch size of 200 as well as ReLU as a non-linear activation function

and 0.95 as a value for the learning rate decay. Although there is a good chance this

won’t end up being the most optimal setting as already noted, it allows for achieving

reasonably high results to the point where we find an optimal model which we will

further optimise. It should also be noted that we were merely concatenating the two

Dropout non-linear function Train Validation Test

0.5 relu 84.92% 75.05% 76.53%

0.2 relu 88.20% 76.99% 77.99%
0.2 tanh 90.71% 77.40% 69.7%

Figure 4.5: Alternating dropout and non-linear function. Siamese-like Model.

Chapter 4. Test and Evaluation 46

outputs from the first two CNNs before running them through the third one. However,

that approach was not taking advantage of the actual dimensional similarities of the

two outputs before processing them through a third CNN. Thus, we knew we should,

in theory, be able to achieve more than what has so far been reported.

Figure 4.6: 2D relationship between accuracy and dropout.

4.1.2.1 Linear operations

To improve the accuracy we implemented different linear operations which we used

instead of concatenating the two outputs and later on in a combination with the con-

catenated outputs as well. We implemented the following additive and multiplicative

models: addition, weighted addition, subtraction, weighted subtraction, multiplication

and circular convolution. Then, we started optimising the hyper-parameters associated

with the models.

Chapter 4. Test and Evaluation 47

Figure 4.7: 2D relationship between accuracy and learn decay.

4.1.3 Randomised Parameter Optimisation

To reduce the time required for hyper-parameter search we used a worker which

continuously sampled random hyper-parameters and performed the optimisation on a

smaller network comprising of 5 epoch training and smaller batch size. Although the

smaller batch size increases the time per epoch it reduces the resources required for

a network training which itself reduced the number of failed jobs on the MSc cluster.

During the training, the worker kept track of the training and validation performance,

the per-epoch time and wrote them down to a file as advised in Stanford University’s

cs231n 1.

4.1.3.1 Dropout and Learning Rate

The worker was sampling the most common hyperparameters in the context of

Neural Networks (namely learning rate decay and dropout). It also took into account

the relatively less sensitive hyper-parameters, for example the weights in weighted ad-

1http://cs231n.github.io/neural-networks-3/

Chapter 4. Test and Evaluation 48

Figure 4.8: 2D relationship between dropout and learn decay.

Chapter 4. Test and Evaluation 49

dition. The search was performed in hyper-parameter ranges as displayed in Figure 4.6

Figure 4.9: 3D Plot of the relationship between dropout, learning rate decay and accu-

racy. Red: mul, Blue: add. Batch size used is 50, hence the results obtained are low in

general.

and 4.7. We used 100 separate trainings for multiplication and addition. The two plots

show the results obtained from the former model. Moreover, the two figures show

the dependencies between dropout and accuracy as well as between learn decay and

accuracy. Note that in Figure 4.7 most sampled points are between 0.88 and 0.96 as

those seem to achieve the highest accuracy. Figure 4.6, however, shows a rather uni-

form sample of dropouts. It can be noticed that the lower dropout value yields higher

performance. However, both dropout and learn decay were correlated, as shown on

Figure 4.8. One can observe that the majority of the samples were taken for dropout

which is smaller than 0.4 and for learning rate decay which is higher than 0.88.

Chapter 4. Test and Evaluation 50

Figure 4.10: 3D Plot of the relationship between dropout, learning rate decay and ac-

curacy. Green: subtr, Blue: add. Batch size used is 50, hence the results obtained are

low in general.

Chapter 4. Test and Evaluation 51

4.1.3.2 Simple Linear Operators

Figure 4.9 shows the relationship between the learning rate decay, dropout and the

accuracy achieved. The red dots indicate the Siamese-like model ran using multipli-

cation between the outputs of the first two CNNs and the blue dots indicate the same

however using addition instead of multiplication. It can be noticed that addition per-

forms slightly better than multiplication in all cases. An interesting observation at that

moment was that neither basic addition nor multiplication could achieve results that

differ by much from the simple concatenation (See Figure 4.1).

Similarly, subtraction outperformed addition by 1.5% on average as shown in Fig-

ure 4.10. This suggests that the assumption made in the previous chapter is not as

strong just as anticipated and that we had a result which differed from the basic con-

catenation by a considerable margin of between 2-3%.

4.1.3.3 Weighted Addition

Figure 4.11 shows the results from sampling values for weighted addition. We

define with α the addition weights associated with the premise and with β the ones

associated with the hypothesis. It can be seen that weights do not lead to any improve-

ment of performance since the best results stem from the cases where α = β = 0.5.

Note how two of the results are very low even though the weights are almost identi-

cal. The reason for this is that these runs have been performed with TanH non-linear

activation function as opposed to ReLU.

4.1.3.4 Circular Convolution

Initially, we thought that circular convolution could highlight the importance of

certain regions of the resulting vector. However, this turned out not to be the case. The

1D convolution was achieving 34% accuracy when ran on its own which could poten-

tially mean it is not doing anything. We knew that tests performed on models that use

circular convolution had to be split to mini-batches as opposed to the other operators

which could use the full batch at a time, thus implying slightly worse performance.

The reason for this is the memory constraints of the cluster’s graphic power or in fact

of any currently existing GPU configuration’s limits. After testing the cyclic convolu-

tion along with some of the other operations we had implemented, we kept obtaining

results which were still at least 2% on average lower than the cases which did not make

use of 1D convolutions at all. Therefore, we concluded that circular convolution did

Chapter 4. Test and Evaluation 52

Figure 4.11: 3D Plot of the relationship between α, β and the associated accuracy.

not work as we anticipated and thus we do not use it in the discussions to follow.

4.1.3.5 Static and non-static parameters

Applying the same tests we have discussed so far to a non-static model, yielded

slightly better results - for example, the model which uses subtraction results in 79.90%

accuracy as opposed to 79.24% when run against a larger batch size. Similar observa-

tion was made in both Kim (2014) and Zhang and Wallace (2015).

4.1.3.6 Window Size

As already explained, the kernel size in NLU tasks tends to only change in height

and not width. The reason for this is that we are interested in modelling the relationship

between neighbouring words as opposed to looking at neighbouring letters. To address

this issue, we test different window shapes. More specifically, we look at filter heights

comprised of three or four different sizes. To examine the performance we claimed

that keeping a relatively small size of the window will improve the performance of our

model. Therefore, we had to prove that increasing the heights will decrease the overall

Chapter 4. Test and Evaluation 53

Filter Height Function Train Validation Test

3,4,5 sub 92.80% 79.19% 79.41%

7,7,7 sub 93.52% 78.04% 78.95%

1,3,5,7 sub 93.86% 78.74% 79.94%

2,3,4,5 sub 93.42% 79.57% 80.60%
7,7,7,7 sub 93.15% 78.26% 80.05%

Figure 4.12: Alternating filter heights.

performance. To achieve this, we used substitution as the function which combines the

outputs from the first two CNNs. First, we examined how our basic setting of [3,4,5]

compares to larger windows of size [7,7,7]. This meant changing the padding to 7

for the latter scenario. Moreover, increasing the window size increased the memory

requirements which did not allow for bigger windows. It turned out that on average the

larger heights reduce performance, therefore by induction our claim was correct. To

further examine this, we increased the size of the window filters by one. As reported

in Table 4.12, we learnt that more filters and relatively smaller filter heights resulted

in better performance. This, in fact, made a lot of sense. Increasing the number of

filters meant increasing the number of feature maps which itself increased the number

of parameters trained. Moreover, keeping the size of the kernels relatively small and

varying it meant learning different convolutions of local regions and enabling more

accurate pooling. In contrast, if the filter size was larger and there were not as many

words in a sentence, the pooling would essentially summarise the actual sentence on

a smaller scale since it will be looking primarily at zeros. This meant it will result in

poorer performance. Moreover, varying the size of the kernels introduced the concept

of learning different representations so that when summed up, the result will have a

more accurate representation of the input that is being convolved with the kernels. An

interesting observation is that the list of consecutively numbered window sizes deemed

the best performance. We expected to show that a list of odd window heights performs

better as there would always be a pair which is located in the middle of the window.

However, Table 4.12 shows that this did not turn out to be true.

Chapter 4. Test and Evaluation 54

Hyper-parameter Value

learning rate method Adadelta

learning rate decay 0.95

hidden units [100,3]

number of epochs 25

filter region [3,4,5]

batch size 50

s2 9

dropout rate 0.2

model mix1

Figure 4.13: Embeddings performance comparison.

4.2 Further Work

4.2.1 Embeddings Evaluation

It is also important to note that we used Zhang and Wallace (2015) as a guideline

while fine-tuning the variety of hyper-parameters.

The paper reports that word2vec outperforms by just a bit GloVe embeddings for

sentence classification tasks. Thus, we wanted to learn if that was the case for our

problem setting too. For that purpose, we used the reported in Table 4.13 hyper-

parameters. We ran 10 tests with word2vec and as many with GloVe. Overall, ob-

tained 79.96% when using word2vec as opposed to 79.04% with GloVe as reported in

Table 4.14. Having recorded a difference of almost one percent helped us realise that

using word2vec was more beneficial to our task. Thus, we will be using it from here

on unless stated otherwise.

4.2.2 Mixed Models Performance

4.2.2.1 Settings

After we obtained a vague idea of what values might prove useful and of the prob-

lem itself, we decided to extend the size of the input for the third CNN. Thus, we

designed 9 different mixtures which are reported in Table 4.15. An important ob-

servation is that the inputs to the third CNN will differ depending on the number of

operations concatenated in a list as well as on the length of the filter window sizes. For

Chapter 4. Test and Evaluation 55

Embedding Model Dropout Train Validation Test

word2vec mix1 0.0 93.41% 78.94% 79.80%

GloVe mix1 0.0 90.36% 78.75% 78.84%

word2vec mix1 0.2 92.95% 79.41% 79.96%
GloVe mix1 0.2 90.42% 78.74% 79.04%

word2vec mix2 0.2 92.94% 79.40% 79.79%

GloVe mix2 0.2 90.35% 78.77% 78.60%

Figure 4.14: Hyper-parameters used for the embeddings comparison. Reported results

are from the test set.

Hybrid Model Name Consists of

mix 1 [concatenation,addition,subtraction]

mix 2 [concatenation,addition,multiplication]

mix 3 [concatenation,subtraction,multiplication]

mix 4 [addition,subtraction]

mix 5 [addition,multiplication]

mix 6 [subtraction,multiplication]

Figure 4.15: Hybrid models contents.

every window we will add 100 entries (since that is the size of the feature maps) for

each output of the first two CNNs. Thus, for a standard setting of [3,4,5] filter window

sizes, mix 1 will have input of size 1200 (600 from concatenating the two outputs and

two times 300 from the addition and multiplication).

4.2.2.2 Evaluation

Now that we had a rough idea about the hyper-parameter values as well as the

importance of the input ratios, we compared the performance of the different mixed

models. So far, we know that subtraction yields the best performance, followed by ad-

dition, basic concatenation, multiplication and lastly performing a cyclic convolution.

Thus, we suspected that the models which contained addition and subtraction will end

up producing the best performance. And so they did. The increase of the input’s size

introduces a potential for more parameters. In order to circumvent this and examine

the actual operators’ performance, we reduced the width of the reshaped inputs to the

third CNNs. We used about a fifth of the overall size of the inputs. Table 4.17 shows

Chapter 4. Test and Evaluation 56

Model Train Validation Test

mix 1 85.74% 78.93% 79.27%
mix 2 79.57% 73.89% 75.85%

mix 3 87.97% 78.24% 78.47%

mix 4 85.27% 78.36% 78.98%

mix 5 83.46% 76.88% 77.47%

mix 6 88.49% 78.36% 79.27%

Figure 4.16: Ratio from 116× 10. Results are averaged. Note some of the models

does not add up to 1600.

Model Train Validation Test

mix 1 93.15% 79.67% 80.47%
mix 2 90.86% 77.55% 78.05%

mix 3 93.42% 79.97% 80.36%

mix 4 93.46% 79.69% 80.10%

mix 5 91.39% 78.15% 78.59%

mix 6 93.34% 79.79% 80.18%

Figure 4.17: Ratio from 50×32. Results are averaged. Note some of the models does

not add up to 1600.

the different results we obtained after running 10 separate tests with each of the new

models. Noticeably, the differences between the results with and without the concate-

nation fraction were negligible. Hence, we concluded that the only benefit considering

the actual concatenation of the outputs from the initial two CNNs is only to the extend

where it enabled us to increase the number of parameters we would train overall. Sim-

ilarly, we could have used two additions and two multiplications instead of having a

concatenation with an addition and a multiplication. That is why, for example, when

training with using a 1 to 1 ratio of the input to the third network we achieved about a

0.25% increase of the performance.

4.2.3 Third CNN’s Input Shape

Another hyper-parameter we had to test was the shape of the input for the third

CNN. So far we have been using values which were close to 300/81 ratio - the same

as the ratio excluding the padding for the first two CNNs. Thus, the values we used

Chapter 4. Test and Evaluation 57

Ratio Train Validation Test

5×240 85.01% 77.68% 78.31%

10×120 85.56% 78.47% 78.87%

12×100 85.66% 78.31% 79.28%

15×80 86.77% 79.07% 79.49%

20 × 60 87.08% 79.38% 80.06%
100×12 86.46% 79.01% 79.87%

Figure 4.18: Dependency of input ratio height × width to performance. Mix 1 with 0.2

dropout.

were 12× 50 for basic concatenation, 10× 30 for the single additive and multiplica-

tive models and 15× 80 for the mixed models which consisted of 3 operations. This,

however, did not mean that we had selected the most appropriate values. Having wider

inputs meant introducing more parameters and the opposite meant more stride opera-

tions. Intuitively, wider inputs should introduce better performance. However, it turned

out that without a sufficient height the size of the parameters did not matter as much.

Tables 4.18 and 4.19 give a summary of the results we obtained showing that the best

ratio was roughly one to three (20× 60 and 25× 64). However, the surrounding ra-

tios with heights 15,100 and 16,50 do seem to perform well too. Regardless, we will

continue to use one to three relationship unless otherwise stated.

Model Train Validation Test

8×200 90.82% 78.01% 78.69%

10×160 87.21% 79.25% 79.09%

16×100 87.52% 79.55% 80.45%

25 × 64 93.19% 79.82% 80.73%
50×32 93.42% 79.51% 80.47%

100×16 93.17% 79.60% 79.96%

Figure 4.19: Dependency of input ratio height × width to performance. Mix 1 with 0.2

dropout.

Chapter 4. Test and Evaluation 58

4.2.4 Number of Epochs

An interesting observation is that the model stops learning anything roughly after

the 10th epoch. Figure 4.20 shows this observation with all the considered models.

Thus, there is in fact no need to run 25 epochs and 10 seem to be more than sufficient.

We will from now on train our network with 10 epochs only. It is also interesting to

note that these are visually split initially into three performance groups where sub, mix

1, 3, 4 and 6 fall under similar learning behaviour that achieves better than the rest.

Figure 4.20: Error rate curves for all models on validation set.

4.3 Additional Hyper-parameter Optimisation

Finally, we wanted to further refine the hyper-parameters we had left, and namely

dropout and learning rate decay. Table 4.22 shows the result from varying the learn-

ing rate decay within the established boundaries in the beginning of this chapter. The

reported accuracy values are the average from running 5 jobs with every value. Ta-

ble 4.21 shows the results we obtained for different dropouts and a learning rate set

to 0.95. In fact, with the shown optimisation we achieve a state-of-the-art result of

81.26% outperforming the results reported in Rocktäschel et al. (2015) which was in

Chapter 4. Test and Evaluation 59

Dropout Train Validation Test Error

0.2 88.13% 79.82% 80.76% 8.26

0.17 88.02% 79.80% 80.13% 8.87

0.15 88.00% 79.92% 80.19% 8.81

0.14 87.87% 79.66% 80.17% 8.83

0.13 88.15% 79.94 81.26% 7.74
0.12 88.15% 79.96% 80.48% 8.52

0.1 88.19% 79.71% 80.55% 8.45

0.05 88.35% 79.69% 80.06% 8.94

0.0 88.25% 79.41% 80.45% 8.55

Figure 4.21: State-of-the-art Result.

fact our goal. The third column named ’Error’ shows how far away our model is from

the recorded human error on the SNLI data set, namely 89%. We are aware that the

hyper-parameters in a CNN are very tightly correlated between each other and that

these values might not be the same if we were to use different value for any other

hyper-parameter.

Learning Rate Decay Train Validation Test

0.95 86.39% 79.27% 80.41%
0.94 88.53% 80.02% 80.31%

0.93 86.66% 79.15% 80.00%

0.92 88.12% 79.53% 79.98%

0.91 88.08% 79.42% 80.00%

0.90 86.74% 79.40% 79.87%

Figure 4.22: Improving learning rate decay.

4.4 Conclusion

The results we achieved outperform the most basic RNN models used against the

SNLI data set as defined by Bowman et al. (2015). Moreover, we achieve similar

and even higher than the attention-based long short-term memory RNN proposed by

Rocktäschel et al. (2015). To achieve this, we used a Siamese-like 3-CNN-wide ar-

chitecture as shown in Figure 3.5. This new model led to an increase in the overall

Chapter 4. Test and Evaluation 60

parameter size by introducing a new, larger input for the third CNN during training.

We then used different mixtures between a number of mathematical operations. Re-

gardless, we are still far from being close to the currently known human error of 89%.

Chapter 5

Discussion and Future Work

In this thesis we have shown that a lot simpler models can perform similar and in

fact better than attention-based RNN solutions for the task of modelling entailment.

We have achieved a state-of-the-art 81.26% performance as opposed to the 80.9% base

model introduced in Rocktäschel et al. (2015). However, their solution, even though

less than an year old, has only set the grounds for entailment modelling. They have

been outperformed by new, more advanced models since then. Currently, the best

known model achieves stunning 87.3% which is by far better than what we introduce

here. Regardless, we would like to highlight that our work aimed to show that basic

CNN implementations can in fact compete with and even outperform the massively

adopted RNN LSTM structures for classifying entailment relationships with very small

effort on feature engineering.

5.1 Further Experimentation

In order to further improve on our results, we would like to extend our hyper-

parameter testing. More specifically, we would like to use an approach called Bayesian

parameter optimisation Adams et al. (2012) to fine tune the values which will deem the

best performance. This, uses a posterior distribution based on current results to pick

the most appropriate hyper-parameter values. We did not use it for the purpose of this

thesis as it can be very time-consuming and achieving results which exceed our results

would have been unfeasible given the amount of people using the university’s MSc

cluster. Regardless, we think that this is a natural continuation of our work. Addition-

ally, we would like to extend the experiments we did with the filter windows. Even

though Zhang and Wallace (2015) show that the best pooling technique for sentence

61

Chapter 5. Discussion and Future Work 62

classification is in fact 1-max pooling, it might be useful if we did look into that too.

We believe that there are a number of more options to be tested, some of which might

result in better results than the ones received herein. Moreover, we wonder what would

be the outcome if we treated the third CNN as if it models basic mathematical patterns

and not as one used for an NLU task. Given that we saw how the input representa-

tion differs quite a bit from the actual syntactic representation observed initially, this

might result in an interesting solution. Although, we think that this is highly unlikely,

it is possible that a mixed model using RNNs and CNNs can turn out to be a better

solutions.

5.2 Attention-Based CNNs

The work of Yin et al. (2015) uses a neural counterpart to alignment Bahdanau

et al. (2014) which is more commonly used in LSTM-based architectures Rocktäschel

et al. (2015), Cheng et al. (2016). The ABCNN model, however, does not use the

SNLI corpus and does not report results obtained from using a basic CNN, thus it

lacks a baseline for clear comparison of performance. Instead, it introduces a basic

Siamese CNN. Moreover, the report describes the use of average-pooling and a TanH

function for the non-linearity. We have, hereby shown that hyperbolic tangent is a

rather difficult function to fit to a model and thus often results in low performance

as reported in Chapter 4. In addition, Zhang and Wallace (2015) show that average

pooling does not give the best results in general. All of these observations question the

outcome of applying attention to CNNs. However, we are curious to see how and if

similar approach can improve the performance of our model with the SNLI data set.

5.3 Parameter Reduction

Currently, our model has about 10M parameters (excluding the embeddings) which

is very computationally expensive and in fact often prevented us from further increas-

ing some of the hyper-parameters such as the batch size or the number of kernels used.

Such restrictions, often affect not only the overall performance but the accuracy as

well. Therefore, we would like to explore ways to reduce those in future. As a matter

of fact Parikh et al. argue that current approaches focus too much on modelling the

complex structures in a sentence and instead should model simple words alignment for

RTE tasks.

Chapter 5. Discussion and Future Work 63

An interesting study performed as part of a course work at Stanford’s CS231n1

suggests that the size of the parameters that are fed into the final fully-connected layer

can be significantly reduced through low-rank approximation2. However, nothing con-

crete was proved in the student’s study. Regardless, it will be interesting to consider

ways of approximating the weights and hence significantly reduce the size of the pa-

rameters. In fact, we agree with Parikh et al. (2016) that the sparser a model, the better

it will perform. We base this belief on the ”bet on the sparsity” concept as discussed in

Tibshirani (2014). Moreover, in support of this claim we reference some of the work

of Hinton who proposes a neural network which reconstructs high-dimensional input

vectors Hinton and Salakhutdinov (2006). Although their research is focused on feed-

forward neural networks it can be applied to CNNs too. However, this would mean

building and training a separate network which will probably not be feasible. In addi-

tion, we could use something simpler like PCA and ICA to cherry-pick only the most

important vectors from the input feature space of the last fully connected layer. In fact,

neural network factorisation is an actively researched field and there are a lot of oppor-

tunities for directing our future work that way. Regardless, all of these techniques will

challenge the core concept of CNNs which assumes fixed architectures before learning.

Thus, such an approach will challenge our architecture as well.

5.4 Domain Adaptation

Another interesting direction is that of Domain Adaptation. This is often confused

with transfer learning. However, there is a subtle difference. Domain Adaptation tries

to solve a given task in such a way that the solution can be applied to different pri-

ors as opposed to transfer learning which is interested in enabling the use of the same

prior (data set) for different likelihoods (features). Regardless, given the little feature

engineering one needs for our model, we believe that domain adaptation is indeed a

feasible path. A big burden, however, would be to split the data in two logical sets

(premises and hypothesis, for example). We think our model has the potential to con-

tribute to areas like activity recognition. A current problem in that field, for example,

is the lack of highly dimensional data set to cope with the complexity of the tasks of in-

terest. However, currently existing approaches are quite good in recognising activities

from simple signal processes Bhattacharya and Lane (2016). However, combined with

1http://cs231n.stanford.edu/reports/neckar.pdf
2http://nlp.stanford.edu/IR-book/html/htmledition/low-rank-approximations-1.html

Chapter 5. Discussion and Future Work 64

depth images, for example, and fed into our model can in fact lead to state-of-the-art

contributions to that field as well.

5.5 Conclusion

Overall, we believe we have shown the potential of using CNNs for modelling en-

tailment relations through successfully achieving our goal and namely outperforming

the work introduced in Rocktäschel et al. (2015) and Bowman et al. (2015). The lit-

tle effort required for feature engineering and the relatively small error introduced in

this thesis highlights an interesting perspective for using CNNs to achieve competitive

results to current research. Moreover, the structure of our implementation can in fact

enable the adaptation of other, enhanced models for any future work.

Appendix A

Appendix

A.1 Linear Regression

A.1.1 Pseudo-inverse

The probability density function (P.D.F.) of Yi, given Y ∼ N(W T X ,σ), (i.e. Y is

drawn from a normal distribution N(.) with meanW T X and variance σ) is:

p(Y |X ,w,σ) =
1√
2πσ
� exp(− 1

2σ
2 � (Y −w1Xi1−·· ·−wnXin)

2) (A.1)

Thus, assuming that data is drawn independently, the likelihood function is:

n

∏
i=1

L(Yi) = (
1√
2πσ

)n� exp(− 1
2σ2 (|Y −XW |)2) (A.2)

To maximise, we need to minimise |Y −XW |2. Therefore, rewriting using scalar prod-

uct as suggested in Panchenko (2006):

|Y −XW |2 = (Y −
n

∑
i=1

wiXiY −
n

∑
i=1

wiXi) = (A.3)

(Y,Y)−2
n

∑
i=1

wi(Y,Xi)+
n

∑
i=1

n

∑
j=1

w jwi(X j,Xi) (A.4)

Then, setting the derivatives in each wi equal zero follows:

−2(Y,Xi)+2
n

∑
j=1

w j(Xi,X j) = 0, there f ore (A.5)

(Y,Xi) =
n

∑
j=1

w j(Xi,X j) (A.6)

65

Appendix A. Appendix 66

Which in matrix notation can be written as:

XTY = XT XW (A.7)

Matrix XT X is an nxn matrix. Moreover, it is invertible, given its rank and there-

fore Equation 2.2 holds. This proof was taken from my own coursework solution on

MLPR1. This makes use of the so called pseudoinverse function Rao and Mitra (1971),

Golub and Van Loan (1996) and namely resulting in:

W = (XT X)−1XTY (A.8)

In order to analytically derive the above we will assume that Y is an p× 1 vector

and w is an nx1 (in our case n= 3) and X is thus p×n matrix. Denoting X =(X1, ...,Xn)

and assuming the columns are linearly independent and the rank of the matrix is equal

to n and that n < p.

A.1.2 Bias

If we define the logarithm of the probability as shown in Bishop (2007):

lnp(Y |X ,w,σ) =
N
2

lnσ− N
2

ln(2π)−σ�ED(W) (A.9)

Where we define an error function as:

ED(W) =
1
2

M

∑
m=1

(ym−w0−
N−1

∑
i=1

wiXi))
2 (A.10)

If we take the derivative with respect to w0, we would get:

w0 = Ŷ −
N−1

∑
i=1

wi�Xi (A.11)

Ŷ =
1
M

M

∑
m=1

ym Xi =
1
M

M

∑
m=1

xm (A.12)

A.1.3 Deriving OED

Deriving the derivative (OED) for the error function is also straightforward. If

we defined the wT � φ(x) as a function, we would Consider the following Bernoulli

scenario:

p(yn|φ(x)n) = σ(wT
φ(x)+bias) (A.13)

1Derivation first done on MLPR Assignment

Appendix A. Appendix 67

Π
N
n=1 p(yn|φ(x)n) = Π

N
n=1 p(yn = 1|φ(x)n)yn

(1− p(yn = 1|φ(x)n)1−yn
(A.14)

We can thus define the log likelihood as:

N

∑
n=1

yn� log(p(y = 1|φ(x)n))+(1− yn)� log(1− p(yn = 1|φ(x)n)) (A.15)

Defining a = wT φ(x)+b:

N

∑
n=1

yn� log(σ(a))+(1− yn)� log(1−σ(a)) (A.16)

OwL=
N

∑
n=1

yn 1
σ(wT φ(x)+b)

σ‘(wT
φ(x)+b)+(1−yn)

1
σ(wT φ(x)+b)

(−σ‘(wT
φ(x)+b))

(A.17)

OwL =
N

∑
n=1

yn

σ(a)
σ(a)(1−σ)φ(x)− (1− yn)

1−σ(a)
σ(a)(1−σ(a))φ(x) (A.18)

Therefore,

N

∑
n=1

(yn− yn
σ(a)−σ(a)+ yn

σ(a))φ(x) =
N

∑
n=1

(yn−σ(a))φ(x) (A.19)

A.2 Convolutional Neural Networks

A.2.1 Circular Convolution

The circular convolution model is not as straightforward to understand. Consider

the first two rows from Table 2.10.

x = [1,7,3,11,5] y = [2,9,5,5,1] (A.20)

Then, if we revert vector y:

x = [1,7,3,11,5] y = [1,5,5,9,2] (A.21)

Then, we need to multiply the two vectors:

x× y = 1+35+15+99+10 = 160 (A.22)

Next step is to shift all elements in y to the left by one and situating the foremost ones

to the end:

y = [5,5,9,2,1] (A.23)

Appendix A. Appendix 68

x× y = 5+35+27+22+5 = 94 (A.24)

We need to repeat that until we rotate through the entire vector y and get back to the

initial state from Equation A.21.

A.2.2 Backpropagation

This work is based on Bengio and Courville (2016). Assume that we are presented

with a kernel stack K, a sentence S and stride stride. Assuming that we have already

computed a convolution Y = c(K,S,stride), referred to as forward propagation, we

would like to compute a backprop too, given some cost function J(S,K). Therefore,

we can write:

Gi, j,k =
∂

∂Yi, j,k
J(S,K) (A.25)

This, essentially equals:

∑
m,n

Gi,m,nS j,(m−1)×stride+k,(n−1)×stride+l (A.26)

If, however, the layer is not the first one, then we will need to compute the gradient

w.r.t. the sentece S. This is achieved by:

h(K,G,stride)i, j,k =
∂

∂Si, j,k
J(S,K) = ∑

j=(l−1)×stride+m
∑

k=(n−1)×stride+p
∑
q

Kq,i,m,pGq,l,n

(A.27)

A.3 Recurrent Neural Networks

A.3.1 Basic Model

Recurrent Neural Networks (RNN) are an alternative way of tackling complicated

relationships between words and sentences. We will not intend to use them in this

thesis. However, the majority of work against which we will compare ours makes use

of them. Thus, we think it is important to simply highlight the concept. For a more

detailed definition of the model we refer the reader to Mikolov et al. (2010), Mikolov

et al. (2011) and Hochreiter and Schmidhuber (1997).

RNNs are known for being very good at modelling the sequential structure of a

sentence. RNNs have only one hidden layer (s(t)) that is being copied over time Keller

(2016).

Appendix A. Appendix 69

x(t+1)

s(t+1)s(t) s(t+2) . . .

ŷ(t+1) ŷ(t+2)

x(t+2)

A.3.2 Backpropagation Through Time and LSTMs

Additionally, we can consider the concept of going back in time. It allows us to

capture longer history information. This essentially means that we can have a better

understanding of the general meaning of a given sequence of words. In other words

”the network ties the recurrent weights with each other guaranteeing a more concrete

and direct adaptation of those weights in an observed sequence of words”2. Regardless,

an important difference is the property of unfolding that BPTT enables us to account

for the influence of n previously seen, ’older’ words in a sequence. However, this leads

to issues such as the vanishing/exploding gradients which can be solved with LSTMs

(See Figure A.13).

2This analysis is taken from Todor Davchev’s work on Assignment 2 for NLU
3http://deeplearning4j.org/lstm.html

Appendix A. Appendix 70

Figure A.1: An LSTM architecture used for RNNs.

Bibliography

Adams, R. P., Snoek, J., and Larochelle, H. (2012). Practical bayesian optimization of

machine learning algorithms.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473.

Bengio, I. G. Y. and Courville, A. (2016). Deep learning. Book in preparation for MIT

Press.

Bengio, Y., Schwenk, H., Senécal, J.-S., Morin, F., and Gauvain, J.-L. (2006). Neural

probabilistic language models. In Innovations in Machine Learning, pages 137–186.

Springer.

Bhattacharya, S. and Lane, N. D. (2016). From smart to deep: Robust activity recog-

nition on smartwatches using deep learning. In 2016 IEEE International Con-

ference on Pervasive Computing and Communication Workshops (PerCom Work-

shops), pages 1–6. IEEE.

Bishop, C. (2007). Pattern recognition and machine learning (information science and

statistics), 1st edn. 2006. corr. 2nd printing edn.

Bobrow, D. G. (1964). Natural language input for a computer problem solving system.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated

corpus for learning natural language inference. arXiv preprint arXiv:1508.05326.

Britz, D. (2015). Understanding convolutional neural networks for nlp.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger,

E., and Shah, R. (1993). Signature verification using a siamese time delay neural

network. International Journal of Pattern Recognition and Artificial Intelligence,

7(04):669–688.

71

Bibliography 72

Chen, D., Bolton, J., and Manning, C. D. (2016). A thorough examination of the

cnn/daily mail reading comprehension task. In Association for Computational Lin-

guistics (ACL).

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using

neural networks. In EMNLP, pages 740–750.

Cheng, J., Dong, L., and Lapata, M. (2016). Long short-term memory-networks for

machine reading. arXiv preprint arXiv:1601.06733.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.

(2011). Natural language processing (almost) from scratch. Journal of Machine

Learning Research, 12(Aug):2493–2537.

Dong, L., Wei, F., Zhou, M., and Xu, K. (2015). Question answering over freebase with

multi-column convolutional neural networks. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing, volume 1, pages 260–269.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015). Transition-

based dependency parsing with stack long short-term memory. arXiv preprint

arXiv:1505.08075.

Firth, J. (1957). A synopsis of linguistic theory 1930-1955 in studies in linguistic

analysis. philological society.

Goldberg, Y. (2015). A primer on neural network models for natural language process-

ing. arXiv preprint arXiv:1510.00726.

Golub, G. H. and Van Loan, C. F. (1996). Matrix computations. 1996. Johns Hopkins

University, Press, Baltimore, MD, USA, pages 374–426.

Harris, Z. (1954). Distributional structure. word 10: 146-162. reprinted in j. fodor and

j. katz. The structure of language: Readings in the philosophy of language, pages

775–794.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-

tation, 9(8):1735–1780.

Bibliography 73

Johnson, M. (2009). How the statistical revolution changes (computational) linguistics.

In Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics

and Computational Linguistics: Virtuous, Vicious or Vacuous?, pages 3–11. Asso-

ciation for Computational Linguistics.

Johnson, R. and Zhang, T. (2015). Semi-supervised convolutional neural networks

for text categorization via region embedding. In Advances in Neural Information

Processing Systems, pages 919–927.

Jurafsky, D. and Martin, J. H. (2014). Speech and language processing. Pearson.

Keller, F. (2016). Recurrent neural networks.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882.

Koch, G. (2015). Siamese neural networks for one-shot image recognition. PhD thesis,

University of Toronto.

Lapata, M. (2016). Semantic composition.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and

Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.

Neural computation, 1(4):541–551.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve

neural network acoustic models. In Proc. ICML, volume 30.

Martin, J. (1973). Design of man-computer dialogues.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T. and Dean, J. (2013). Distributed representations of words and phrases and

their compositionality. Advances in neural information processing systems.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Recur-

rent neural network based language model. In Interspeech, volume 2, page 3.

Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., and Khudanpur, S. (2011). Ex-

tensions of recurrent neural network language model. In 2011 IEEE International

Bibliography 74

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5528–

5531. IEEE.

Mitchell, J. and Lapata, M. (2010). Composition in distributional models of semantics.

Cognitive science, 34(8):1388–1429.

Munkhdalai, T. and Yu, H. (2016). Neural tree indexers for text understanding. arXiv

preprint arXiv:1607.04492.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Nielsen, M. A. (2015). Neural networks and deep learning. URL:

http://neuralnetworksanddeeplearning. com/.(visited: 01.11. 2014).

Panchenko, D. (2006). Multiple linear regression.

Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for senti-

ment categorization with respect to rating scales. In Proceedings of the 43rd annual

meeting on association for computational linguistics, pages 115–124. Association

for Computational Linguistics.

Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. (2016). A decomposable

attention model for natural language inference. arXiv preprint arXiv:1606.01933.

Partee, B. (1995). Lexical semantics and compositionality. An invitation to cognitive

science: Language, 1:311–360.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word

representation. In EMNLP, volume 14, pages 1532–43.

Rao, C. R. and Mitra, S. K. (1971). Generalized inverse of matrices and its applica-

tions, volume 7. Wiley New York.

Reddy, S., Tackstrom, O., Collins, M., Kwiatkowski, T., Das, D., Steedman, M., and

Lapata, M. (2016). Transforming dependency structures to logical forms for seman-

tic parsing. Transactions of the Association for Computational Linguistics, 4:127–

140.

Renals, S. (2015). Multi-layer networks.

Richards, M. (2015). Software architecture patterns.

Bibliography 75

Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kočiskỳ, T., and Blunsom,

P. (2015). Reasoning about entailment with neural attention. arXiv preprint

arXiv:1509.06664.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal repre-

sentations by error propagation. Technical report, DTIC Document.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences,

3:417–424.

Shapiro, S. C. (1992). ENCYCLOPEDIA OF ARTIFICIAL INTELLIGENCE SECOND

EDITION. New Jersey: A Wiley Interscience Publication.

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best practices for convolutional

neural networks applied to visual document analysis. In ICDAR, volume 3, pages

958–962.

Tibshirani, R. J. (2014). In praise of sparsity and convexity. Past, Present, and Future

of Statistical Science (X. Lin, C. Genest, DL Banks, G. Molenberghs, DW Scott, and

J.-L. Wang, Eds.). Chapman & Hall, London, pages 497–505.

Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015). Structured training for neural

network transition-based parsing. arXiv preprint arXiv:1506.06158.

Weizenbaum, J. (1966). Elizaa computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9(1):36–

45.

Williams, C. (2015a). Classification.

Williams, C. (2015b). Data and models.

Winograd, T. (1972). Understanding natural language. Cognitive psychology, 3(1):1–

191.

Yin, W., Schütze, H., Xiang, B., and Zhou, B. (2015). Abcnn: Attention-

based convolutional neural network for modeling sentence pairs. arXiv preprint

arXiv:1512.05193.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701.

Bibliography 76

Zhang, Y. and Wallace, B. (2015). A sensitivity analysis of (and practitioners’

guide to) convolutional neural networks for sentence classification. arXiv preprint

arXiv:1510.03820.

	Introduction
	General Overview
	Motivations
	Realisation and Document Structure

	Background
	Linear Models for Classification
	Activation Functions
	On-line parameter learning
	Regularisation
	Cross Validation

	Feed-forward Neural Networks
	Concepts
	Network Training
	Parameter Optimisation
	Error Backpropagation
	Model Architectures

	Word Vectors
	Word Representations
	Semantic Composition

	Convolutional Neural Networks
	Motivation
	A different perspective
	In depth analysis
	Backpropagation
	Simple architecture of a CNN for NLU

	Siamese Model

	Modelling Entailment
	Entailment Relations with SNLI
	Simple Model
	Implementation and Code Re-factoring

	Building Extended Models
	Accommodating the model to work with SNLI
	Extending the Model
	Siamese-like 3-CNN-wide structure
	Additive and Multiplicative Models

	Summary

	Test and Evaluation
	Initial Tests
	Baseline Model
	Extended Model
	Randomised Parameter Optimisation

	Further Work
	Embeddings Evaluation
	Mixed Models Performance
	Third CNN's Input Shape
	Number of Epochs

	Additional Hyper-parameter Optimisation
	Conclusion

	Discussion and Future Work
	Further Experimentation
	Attention-Based CNNs
	Parameter Reduction
	Domain Adaptation
	Conclusion

	Appendix
	Linear Regression
	Pseudo-inverse
	Bias
	Deriving ED

	Convolutional Neural Networks
	Circular Convolution
	Backpropagation

	Recurrent Neural Networks
	Basic Model
	Backpropagation Through Time and LSTMs

	Bibliography

